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Abstract

Custom software is distinct from other types of capital in that it is non-rival—once a firm

makes an investment in custom software, it can be used simultaneously across its many es-

tablishments. Using confidential U.S. Census data, we document that while firms with more

establishments are more likely to invest in custom software, they spend less on it as a share

of total capital expenditure. We explain these empirical patterns by developing a model that

incorporates the non-rivalry of custom software. In the model, firms choose whether to adopt

custom software, the intensity of their investment, and their scope, balancing the cost of man-

aging multiple establishments with the increasing returns to scope from the non-rivalrous cus-

tom software investment. Using the calibrated model, we assess the extent to which the decline

in the rental rate of custom software over the past 40 years can account for a number of macroe-

conomic trends, including increases in firm scope and concentration.
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1 Introduction

Software investments have grown substantially over the past 40 years. A considerable portion of
this growth is attributed to software that is unique to the firm, either developed in-house or cus-
tomized by a vendor. Firm-level investments in such custom software surpassed 8 percent of U.S.
nonresidential fixed investment in 2021, increasing from just 2 percent in 1980 (Figure 1). Custom
software is different from traditional capital because it is non-rival. Unlike a cash register or fork-
lift, limited to use at a single time and location, a firm can use its custom software simultaneously
across its many establishments, raising a number of questions about its impact on the boundaries of
the firm and investment decisions. How does the non-rivalry of custom software influence a firm’s
decision to adopt custom software, the allocation of investment between non-rival and traditional
capital, and its choice of how many establishments to maintain? To what extent can technological
improvements in custom software explain macroeconomic trends, such as the rise in the number
of establishments operated by the largest firms and the rise in market concentration?

Despite its growing importance, studies addressing custom software and its implications are
limited. Previous literature often lumps custom software with other rivalrous information and
communication technology (ICT) investments or considers it a component of intangibles, which
are difficult to measure. In this paper, we make three contributions. First, we use a novel dataset on
firm-level investments in custom software to document how the adoption and intensity of invest-
ment in custom software vary with firm scope, measured by the number of establishments a firm
operates. Second, we build a model in which firms choose whether or not to adopt a non-rival input
and, if so, how much to invest. Firms choose their scope, balancing the cost of managing multiple
establishments with the increasing returns to scope from the non-rivalrous investment. Third, we
show that the calibrated model can match the empirical patterns on custom software use, and we
use it to examine the aggregate impact of a decline in the rental rate of software. We find that
advancements in the software sector can account for a significant share of the rise in firm scope
and concentration.

We start our analysis by documenting several motivating facts using the Annual Capital Expen-
diture Survey (ACES), a confidential dataset from the U.S. Census. The dataset provides detailed
information on firm-level investment decisions across different capital categories, including cus-
tom software. We merge the ACES with the Revenue-Enhanced Longitudinal Business Database
(LBD), which has information on the number of establishments a firm operates, our primary mea-
sure of firm scope, along with firm employment, payroll, and sales. We use the data to document
two motivating facts. First, on the extensive margin, we show that the share of firms that invest
in custom software increases with firm scope. Second, on the intensive margin, conditional on a
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Figure 1: Custom Software Share of Total U.S. Non-Residential Fixed Investment

Notes: This figure shows the share of non-residential fixed investment that is accounted for by custom software, which
we define as the sum of vendor-customized and own-account software. Source: BEA National Accounts Data.

firm having positive custom software investments (called “adopters” hereafter), the share of total
investments devoted to custom software declines with firm scope. Moreover, for adopters, the cost
shares of software, capital, and labor all vary with firm scope.

Motivated by these empirical patterns, we build a model of heterogeneous firms that incorpo-
rates the non-rivalry of custom software and firms’ choice of scope. In the model, firms choose
between two production functions—one only with labor and capital and one which also incorpo-
rates custom software—along with the corresponding optimal choice of firm scope. Crucially, the
software input is non-rival, allowing the firm to pay for the investment once and then use it cost-
lessly at each establishment. Many papers model ICT or software as a fixed cost that lowers the
marginal cost to the firm. Instead, we model software as a variable input that enters the production
function similarly to capital and labor. However, unlike capital and labor, the software input can be
shared across the firm’s many establishments. As a result, the effective cost of software declines in
firm scope. Firms choose the optimal scope by trading off the benefits from the reduction in the ef-
fective cost of software and the profits from an additional establishment against the span-of-control
costs and within-firm cannibalization.

To quantify the impacts of increasing software investment, we calibrate the model using micro
data from the ACES-LBD matched sample. The calibrated model is able to generate patterns
consistent with the empirical facts. On the extensive margin, the effective cost of software is high
for firms with a small scope, leading only the largest firms to opt for software adoption, consistent
with our empirical finding that adoption of custom software is increasing in firm scope. On the
intensive margin, because of the non-rivalry of the software input, the resulting production function
for adopters is non-homothetic: the cost shares of software, capital, and labor vary endogenously
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with firm scope.1 This is consistent with our finding in the data that the factor cost shares vary with
firm scope. In particular, the calibrated model can match the fact that, on the intensive margin, the
investment share of custom software is declining in firm scope.

Finally, we use the model to examine the aggregate implications of technological changes in the
production and use of software. To that end, we first calibrate our model to the current “software
era” using data moments from 2018, the last year of our sample in the ACES. We then shock
the model to the pre-software era in the late 1980s by reducing the productivity of the software-
producing sector to match a 63 percent increase in the rental rate of custom software compared with
the present period. Through the lens of the model, the shock leads to a more-than-twofold increase
in the adoption rate of custom software, and the impacts are heterogeneous across firms. On the
one hand, firms that do not adopt software contract their scope, driven by the general equilibrium
increase in the wage. On the other hand, adopters, especially those that switch from non-adopter
to adopter, experience increases in firm scope and market share. Even within the group of firms
that adopt software, the impact of the shock is heterogeneous due to the non-homotheticity and the
increasing returns to scope.

In aggregate, the shock to the rental rate of custom software can explain approximately 20 per-
cent of the increase in aggregate custom software investment share. Moreover, the shock generates
just over 20 percent of the observed increase in the share of establishments owned by the top 1%
of firms and the sales share of the top 1% of firms. Additionally, the model also generates a slight
decrease in the aggregate labor share, though the magnitude of this decrease is small compared to
the data. We analyze how the impact of the decline in the rental rate of software compares to that
of a software-biased technical change shock and a reduction in the fixed cost of adopting software.

Our model assumes that custom software is both non-rival and non-excludable within the firm.
While all software is non-rival, there may be other factors that restrict a firm’s ability to use its
investment costlessly across multiple establishments. For instance, vendor-customized software
can be subject to licensing arrangements, making it partially excludable. Moreover, software suit-
able for one establishment might require adjustments for another. In Appendix C.2, we extend our
model to account for the partial excludability and specificity of software and discuss the robustness
of our main results.

While custom software in the model is non-excludable within the firm, it is excludable across
firms. This is a key distinction between our model and endogenous growth models in which non-
rival inputs, such as ideas, are at least partially non-excludable across firms, leading to economy-
wide increasing returns to scale (e.g. Jones, 2005; Romer, 1990). In contrast, our model features

1Typical production functions such as Cobb-Douglas and constant-elasticity of substitution (CES) are homothetic,
so the factor cost shares do not depend on firm size or scope.
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increasing returns to scale within the firm but no spillovers across firms.2

The model we develop offers a comprehensive framework that integrates the adoption of non-
rival inputs, the allocation of investment between non-rival and rival inputs, and the interaction
with the firm’s choice of scope. Although our analysis is centered on custom software as the non-
rival input and the number of establishments as the measure of firm scope, the model is general
and could be applied more broadly to other non-rival inputs such as brands, expertise, and patents.
This paper focuses on custom software as a non-rival input for two key reasons. First is custom
software’s growing importance as a share of aggregate investment. Second, data on intangibles
is scarce because they are hard to measure. In this case, we have reliable survey data on one
of the best-measured intangibles, custom software. Similarly, one could think of many measures
of firm scope, including the number of product lines or industries. We focus on the number of
establishments as the primary measure of firm scope because previous literature has documented
the importance of the growing number of establishments per firm for the rise in concentration
(Hsieh and Rossi-Hansberg, 2023; Smith and Ocampo, 2020).

Related literature. We make both empirical and theoretical contributions to the literature on
intangible capital, such as brands, patents, managerial practices, expertise, data, and firm culture.3

Intangibles are difficult to measure (Crouzet and Eberly, 2021; McGrattan, 2020; McGrattan and
Prescott, 2010). We contribute by focusing on one form of intangibles for which we have high-
quality firm-level data, custom software, which allows us to document patterns of custom software
use across the distribution of firm scope and to analyze the growing importance of custom software
as a form of investment.

Furthermore, we develop a model of custom software as a variable input that is non-rival across
the establishments of the firm, following Crouzet et al. (2022a,b). Motivated by our empirical find-
ings, we add an extensive margin choice to adopt custom software, which is crucial in determining
the distributional impacts of shocks across firms. Moreover, we show that the interaction between
the choice of firm scope and the variable non-rival input provides a micro-foundation for a non-
homothetic production function (Sato, 1977).4 Increasing returns to scope arise endogenously, in

2Jones and Tonetti (2020) characterize the inefficiency that arises in an economy where a non-rival input, like data,
is also partially excludable across firms.

3Among others, see Aghion et al. (2023); Argente et al. (2021); Bhandari et al. (2022); Bhandari and McGrattan
(2020); Chiavari and Goraya (2023); De Ridder (2024); Ding (2023); Ding et al. (2022); Farboodi et al. (2019);
Kleinman (2022); Weiss (2020).

4The non-homotheticity arises from the use of the CES production function and the treatment of software as a
non-rival input. In contrast, Crouzet et al. (2022b) assume a Cobb-Douglas production function, which is homothetic
regardless of whether inputs are rival or not. A recent literature considers non-homothetic production functions in
understanding the rise in concentration, geographic divergence, and the welfare effects of trade, among others (Eckert
et al., 2022; Lashkari et al., 2018; Trottner, 2020).
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contrast to papers that model intangibles or ICT as a fixed cost that lowers the firm’s marginal cost
(De Ridder, 2024; Hsieh and Rossi-Hansberg, 2023; Jiang, 2023; Mariscal et al., 2018; Rubinton,
2020).

We also contribute to the extensive literature linking the rise of software, and ICT more broadly,
to macroeconomic trends.5 Closely related, Lashkari et al. (2018) finds that the fall in ICT prices
can explain changes in concentration and the labor share in France and De Ridder (2024) finds
that intangibles can account for the slowdown in productivity growth and the increase in market
power. We enrich the literature by incorporating software adoption, the choice of firm scope, and
the non-rivalry of custom software. We show that the non-rivalry can provide a micro-foundation
for the main mechanisms in both models: the assumption of a non-homothetic production func-
tion in Lashkari et al. (2018) and the assumption that intangibles lower the firm’s marginal cost
in De Ridder (2024). Moreover, examining the link with firm scope enables us to address the
expansion of multi-establishment firms in the U.S., a key driver of the increase in concentration
(Hsieh and Rossi-Hansberg, 2023; Smith and Ocampo, 2020). We find that the reallocation be-
tween adopters and non-adopters plays a crucial role in explaining the changes in concentration
and that the software shock can account for 20 percent of the observed increase in the share of
establishments owned by top firms.

The rest of the paper is organized as follows. Section 2 describes our data and sample. Sec-
tion 3 presents the motivating facts on the relationship between the use of software and firm scope.
Section 4 lays out the model, followed by model quantification in Section 5. Section 6 examines
the implications of the software shock. Section 7 concludes.

2 Data

The data for this paper come primarily from two data sets: the Annual Capital Expenditures Survey
(ACES) and the Revenue-Enhanced Longitudinal Business Database (LBD).

Annual Capital Expenditures Survey. The ACES is an annual firm-level survey available be-
tween 2002 and 2018 conducted by the Census Bureau that collects information on firms’ capi-
talized investment in structures, equipment, and software. The survey gathers information on all

5Extensive research has delved into examining how ICT affects firm behavior and implications for the macroe-
conomy (e.g., Acemoglu et al., 2022; Aral et al., 2006; Aum and Shin, 2022; Baslandze, 2016; Bessen, 2020; Bloom
et al., 2012; Brynjolfsson and Hitt, 1996, 2003; Brynjolfsson et al., 2023; Brynjolfsson and McElheran, 2016; Bryn-
jolfsson and Yang, 1996; Contractor and Taska, 2023; Dedrick et al., 2003; Goldfarb and Tucker, 2019; Jorgenson,
2001; Jorgenson et al., 2003; Oliner and Sichel, 2000; Stiroh, 2002; Van Reenen et al., 2007).
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sectors of the economy. Firms with over 500 employees are automatically sampled into the survey.
Smaller firms are stratified by industry and payroll and then randomly selected. To ensure that our
sample is nationally representative, we apply the weights provided by the ACES.

Software, as part of equipment investment, is reported in three categories: prepackaged, vendor-
customized, and own-account. Prepackaged software is purchased off-the-shelf, vendor-customized
software is externally developed and tailored to the firm’s needs, and own-account software is cre-
ated by the firm’s employees for internal use. We focus on the latter two types—vendor-customized
and own-account software (referred to as “custom software” hereafter)—which most closely map
to our notion of an input that is non-rival and non-excludable within the firm, but excludable
across firms. The ACES specifies that the firm should only report software developed for “internal
use”—software that is developed to meet the firm’s own needs—and should exclude investments
in software that they plan to sell to the market. It also specifies that firms should only include
capitalized investments, i.e., those listed as assets on the firm’s balance sheet and then depreciated
or amortized (U.S. Census Bureau, 2022).

One may be concerned that firms are not properly tracking and reporting their software invest-
ments or that firms are not capitalizing them onto their balance sheet. However, according to the
Generally Accepted Accounting Principles (GAAP), both vendor-customized and internally devel-
oped software for internal use should be capitalized onto the firm’s balance sheet.6 We describe
the ACES and the accounting principles in Appendix A. Additionally, in Appendix B.4, we restrict
to a sample of public firms, which must follow GAAP guidelines in their financial statements to
the SEC and are less likely to be subject to measurement issues.

Longitudinal Business Database. We merge the ACES with the revenue-enhanced LBD, a panel
dataset of the universe of U.S. employer establishments. The LBD contains information on estab-
lishment employment, payroll, age, industry, and location. Importantly, the LBD contains firm
identifiers for each establishment, which allows us to aggregate to the firm level. When a firm
is in more than one industry, we impute the industry of the firm using the one with the largest
employment share.7 The data also report sales at the firm level.

We use the number of establishments of the firm as the primary measure of firm scope. In
Appendix B.1, we show that our results are robust to alternative measures of firm scope, such as

6Prepackaged software, however, may be expensed. Thus, the ACES likely under-counts prepackaged software
investments, which are often not capitalized. This is another reason why we focus on custom rather than pre-packaged
software.

7Following Rubinton (2020), we assign the 2-digit NAICS code with the highest employment share first, and then
assign the three-digit code with the highest employment share that is consistent with the 2-digit code. We then follow
the same procedure up to 6-digits.

7



employment, sales, and number of industries. Using the firm identifiers, we follow the procedure
described in Rubinton (2020) to merge the LBD with the ACES.

Sample selection. After merging the LBD and the ACES, we drop a number of observations,
including those with: (1) zero or missing payroll, sales, or employment; (2) missing values of
total capital expenditures, missing equipment or structures investment, or missing own-account,
custom, or pre-packaged software investment; (3) firms that report negative fixed assets at the end
of the year; (4) firms that report equipment investment that is less than software investment (soft-
ware should be included in equipment). We also winsorize outliers of total capital expenditures,
equipment, structures, each type of software investment, and custom software per employee at the
99.5th percentile in each year and 6-digit NAICS industry. Our final sample includes 384,000 ob-
servations.8 Table A.1 displays the proportion of investment in the publicly released ACES totals
that are accounted for by the firms included in our final ACES-LBD matched sample. Averaging
across the years, our sample accounts for 71% of total software investment and 66% of total capital
expenditures.

Summary statistics. Table 1 reports summary statistics of software investment and other firm
characteristics. We call firms that report positive investments in custom software adopters and
firms with zero investment non-adopters. Approximately 3% of firms have adopted custom soft-
ware. These adopters devote a significant share of their total investment to custom software—on
average, 37.8% of their total capital expenditure is devoted to custom software rather than tradi-
tional equipment and structures. The lower panel shows that software adopters are, on average,
bigger; they have higher employment and sales and operate more establishments. Notably, the
average number of establishments is six times larger for adopters than non-adopters.

3 Motivating Facts

In this section, we use the merged ACES-LBD data described in Section 2 to document new facts
on the relationship between firm scope and custom software use. First, in Section 3.1, we show
how software investment varies with firm scope on the extensive and intensive margins. Second,
in Section 3.2, we show how the cost shares of software, capital, and labor vary with firm scope.

8Observation counts are rounded to the nearest thousand in accordance with Census’s disclosure review policies.
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Table 1: Summary Statistics

All Firms Adopters Non-adopters
Software Investment
1[adopting custom software] 0.030 1 0

(0.170) (–) (–)
Custom SW to total capital expenditure share 0.027 0.378 0

(0.135) (0.352) (–)
Custom SW expenditure per employee (thous. $) 0.050 1.690 0

(0.910) (5.00) (–)
Other characteristics
Total capital expenditure (million $) 0.265 5.497 0.104

(27.0) (145.2) (10.0)
Equipment expenditure (million $) 0.166 3.557 0.062

(22.1) (121.4) (7.1)
Structure expenditure (million $) 0.097 1.900 0.042

(10.4) (51.5) (5.4)
Payroll (million $) 1.487 18.61 0.961

(66.9) (280.1) (46.8)
Sales (million $) 7.423 102.90 4.485

(475.6) (2171) (296.3)
Employment 30.7 334.8 21.3

(1347) (5989) (873.2)
Number of establishments 1.473 7.747 1.279

(28.09) (132.8) (16.42)

Notes: This table shows summary statistics of the LBD-ACES matched sample for all firms, custom software adopters,
and non-adopters, respectively. Adopters are firms with positive investments in custom software, and non-adopters are
firms with zero investment in custom software.

3.1 Software Intensity and Firm Scope

This section presents our main stylized facts. First, on the extensive margin, the likelihood that a
firm has positive investments in custom software increases in firm scope, measured as the number
of establishments a firm owns. Second, on the intensive margin, given adoption, the intensity of
custom software investment, measured as the custom software share of total capital expenditures,
decreases in firm scope.

We categorize firms into size bins based on the number of establishments they operate. Then,
we estimate the following regression

Yik jt = γk +δ jt + εik jt , (1)
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where i denotes the firm, k the establishment-size bin, j the industry, and t year. γk is a set of fixed
effects for each establishment size bin, and δ jt is a set of industry-year fixed effects at the 6-digit
NAICS level. Our main outcome variable, Yi jkt , is either (1) an indicator for whether firm i has
positive investments in custom software or (2) firm i’s custom software intensity. In the first case,
we include all firms, both adopters and non-adopters. In the latter case, we drop all firms that report
zero custom software investment. In other words, we estimate the relationship between software
intensity and firm scope on the intensive margin, conditional on the firm being an adopter.

Figure 2 shows our main results, plotting the establishment-size fixed effects, γk. Panel A
shows that, on the extensive margin, the fraction of firms adopting custom software increases with
the number of establishments of the firm. Compared to single-unit firms (the omitted category),
firms with 2–4 establishments are 5.5 percentage points more likely to invest in custom software.
The fraction further increases by over 40 percentage points for firms with over 100 establishments.

On the intensive margin, Panel B shows that conditional on positive investment, the intensity
of custom software investment decreases with firm scope. Here, we measure the software intensity
by the share of custom software expenditures relative to total capital expenditures. On average,
adopters devote 37.8 percent of their capital expenditures to custom software. For firms with over
100 establishments, the custom software share of investment is 21 percentage points lower than
single-unit firms. Despite companies with a greater number of establishments allocating a smaller
share of their capital expenditure to custom software, the level of investment in custom software
by these firms is higher.9

Robustness checks. We present four sets of robustness checks in Appendix B.1–B.4. First, we
show that the results are robust to alternative measures of firm scope, including firm employment,
sales, and the number of industries in which the firm operates. As shown in Table A.2, the positive
relationship on the extensive margin and the negative relationship on the intensive margin remain
across different measures of firm scope.

Second, on the intensive margin, Table A.3 shows that the results are robust to using alternative
measures of software intensity. Column (2)–(6) use the custom software expenditures per worker
and the cost shares of custom software as intensity measures. Appendix B.2 provides more details
on the construction of the cost shares of custom software. Across all measures, software intensity
declines in firm scope.

Third, Table A.4 shows that our results are robust to incorporating firm fixed effects to ac-

9Lashkari et al. (2018) use firm-level microdata from France and document that the ICT cost share is increasing
with firm size. Using U.S. data, we focus on a specific type of software investment—custom software—and find
different empirical patterns, particularly on the intensive margin.
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Figure 2: Software Intensity and Firm Scope

A. Extensive Margin B. Intensive Margin

Notes: This figure plots the establishment-size bin fixed effects, γk, from Equation (1)), with single-unit firms as the
omitted category. Panel A plots the share of firms investing in custom software in each establishment size category.
Panel B plots the software investment intensity, measured by the share of custom software expenditures relative to
total capital expenditures, for each establishment size category. The regression controls for industry-year fixed effects
at the 6-digit NAICS level. We report the 95% confidence interval. Standard errors are clustered at the industry-year
level.

count for time-invariant firm heterogeneity. Specifically, we restrict to a sample that includes firms
with more than 500 employees and show up at least twice in the sample period. In this case, the
coefficients are identified by within-firm variations in the software investment over time.

Finally, to address the concern that firms might not accurately track and capitalize custom soft-
ware investments, we restrict our analysis to a sub-sample of public firms. Public firms, generally
larger in scale, are obligated to follow GAAP guidelines in their financial statements to the SEC,
alleviating potential concerns about measurement errors.10 Table A.5 shows that the empirical
patterns remain for public firms.

3.2 Cost Shares and Firm Scope

In addition to software, the cost shares of labor and capital also vary with firm scope. Let j denote
the industry of firm i. We compute the firm’s cost share of software by

µ
s
it =

ps
jtsit

r jtKit + ps
jtsit +wLit

, (2)

10We discuss the GAAP accounting standards in Appendix A.2.
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where ps
jt is the rental rate for custom software and r jt is the rental rate for all other capital.11 For

the software input sit , ideally, we would have a measure of the firm’s stock of custom software,
but the data only provides information on investment. Moreover, many firms only show up once
in the sample or have a short panel, which prevents us from using the perpetual inventory method.
Therefore, we use the firm’s investment as the baseline measure for the stock, assuming full de-
preciation within a year. In Appendix B.2, we show that our results remain robust under different
assumptions regarding the depreciation rate of custom software and whether the firm’s software
expenditures take the form of wages to its developers or payments to a third-party vendor.

We use the firm’s fixed assets reported in the ACES to measure the capital input Kit . Since soft-
ware is included in the measures of equipment, we subtract software investment to get a measure
of non-software capital. We use the payroll reported in the LBD to measure wage bills wLit . The
cost shares of labor and capital are similar, with wLit or r jtKit in the numerator of Equation (2).

Using our measures of the cost shares, we estimate regressions of the cost share on the log
number of establishments:

µ
f

it = β
f

1 1[SW adopterit ]+β
f

2 log(Nit)+β
f

3 1[SW adopterit ]× log(Nit)+ εit , (3)

where f refers to the specific factor (software, capital, or labor) and 1[SW adopter] is an indicator
equal to 1 if the firm is an adopter. Additionally, we control for firm age and industry-year fixed
effects.

Table 2 Column (1) reports the results for the cost share of custom software. Since, by construc-
tion, this cost share is zero for non-adopters, we focus on the sample of adopters. For adopters,
the coefficient on the log number of establishments is estimated at −0.004, which confirms the
negative relationship between software intensity and firm scope. Since the biggest firms are about
600 establishments (or 6.4 log points) bigger than single-unit firms, their software cost share is,
on average, about 2.6(= 6.4 ∗ 0.004) percentage points lower. The average custom software cost
share for adopters is 4.5%. Thus, the software cost share is more than 50% lower for the largest
adopters than the smallest adopters.

Columns (2)–(3) report the results for the cost shares of labor and capital. To ease interpre-
tation, we report the coefficient on log(Nit) for non-adopters (β2) and adopters (β2 +β3), respec-
tively. Interestingly, the labor cost share for non-adopters and adopters displays different relation-
ships with firm scope. The estimated coefficient for non-adopters is 0.006, indicating that their
labor cost share increases in the number of establishments. On the other hand, the coefficient for
adopters is estimated to be negative at −0.007: The more establishments a firm operates, the lower

11We use the rental rates at the 4-digit NAICS level from the BLS.
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Table 2: Cost Shares and Firm Scope

Cost Share of

Custom Software Labor Capital
(1) (2) (3)

1[SW adopter] −0.019∗∗∗ −0.029∗∗∗

(0.004) (0.005)
1[SW non-adopter]× log(NEstab) 0.006∗∗∗ −0.007∗∗∗

(0.001) (0.001)
1[SW adopter]× log(NEstab) −0.004∗∗∗ −0.007∗∗∗ 0.018∗∗∗

(0.001) (0.002) (0.002)

N 82,000 384,000 384,000
R2 0.734 0.257 0.257
Ind–Year FE Y Y Y
Age FE Y Y Y

Notes: This table estimates Equation (3) with the cost share of custom software, labor, and capital as dependent
variables. 1[SW adopter] is an indicator set to 1 if a firm makes positive investment in custom software, and log(NEstab)
is the logarithm of the number of establishments the firm operates. We control for firm age and industry-year fixed
effects. Industry is at the 6-digit NAICS level. Standard errors are clustered at the industry-year level.

its cost share of labor. A firm with 6.4 log-points more establishments (the difference between
the number of establishments of firms in our smallest and largest establishment-size bins) has, on
average, a labor cost share that is 4.5(= 6.4∗0.007) percentage points lower.

If both the labor and software cost shares are decreasing in firm scope for adopting firms, then
the capital cost share must be increasing. This is confirmed in column (3). The capital share is
0.0180 percentage points higher for firms with a 1 log point larger number of establishments.

4 Model

In this section, we present a theory of software as an input that is non-rival across the firm’s
establishments.12 In Section 4.4, we discuss how the model can match the cross-sectional facts
presented in Section 3.

12We summarize the model environment in Table A.10.

13



4.1 Final Good Producer

A representative firm produces the final good in a perfectly competitive market by aggregating
output yi from a continuum of intermediate input producers i

Y =

(∫
I

y
ε−1

ε

i di
) ε

ε−1

, (4)

where ε is the elasticity of substitution across firms i ∈ I and I is the set of producing firms that
is endogenously determined in equilibrium. Each firm’s output yi is in turn a CES aggregator of
the differentiated varieties yie produced by a continuum of its establishments e ∈ [0,Ni]

yi =

(∫ Ni

0
y

θ−1
θ

ie de
) θ

θ−1

, (5)

where θ is the elasticity of substitution within the firm across establishments. Ni is the measure of
establishments that firm i chooses to operate, i.e., firm scope.

The final good producer purchases intermediate goods produced by establishments at price pie.
Profit maximization implies that the demand facing each establishment is

yie =

(
pie

pi

)−θ ( pi

P

)−ε

Y, (6)

where the price indices are given by

P =

(∫
I

p1−ε

i di
) 1

1−ε

and pi =

(∫ Ni

0
p1−θ

ie de
) 1

1−θ

. (7)

We use the final good as the numeraire and normalize its price, P, to 1.

4.2 Intermediate Good Producers

Firm i operates a continuum of establishments e ∈ [0,Ni], with each establishment producing a
differentiated variety. Firms compete monopolistically in each of those markets. A firm can choose
between two available technologies for their production function. Firms that do not adopt the new
technology produce using a CES production function over capital and labor, whereas adopters also
use custom software. We assume that the firm’s establishments are identical.

Firms differ in their fundamental productivity zi. Given productivity, firms maximize their
profits by choosing whether to adopt custom software (τi ∈{NA,A}), their firm scope (Ni), the price
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and quantity of each establishment’s variety, (pie and yie), and factor inputs at each establishment,
including capital (kie), labor (lie), and if they are adopters, software (sie). Though all the choices are
made jointly, we can solve the firm’s problem backwards. First, conditional on the choice of scope,
price, and technology, we solve the firm’s cost minimization problem. Second, conditional on the
technology choice, we solve for the choice of scope and price. Finally, we solve the technology
adoption decision.

Production function. If a firm chooses not to adopt software (i.e., “non-adopters”), its establish-
ments produce output using labor and capital

yNA
ie = zi

[
γ

1
σl
l l

σl−1
σl

ie +(1− γl)
1

σl k
σl−1

σl
ie

] σl
σl−1

, ∀e ∈ [0,Ni], (8)

where the elasticity of substitution between capital and labor is given by σl and the weight on
labor, as opposed to capital, is given by γl .

If a firm chooses to adopt software (i.e., “adopters”), its establishments produce output using
labor, capital, and software

yA
ie = zi

γ

1
σl
l l

σl−1
σl

ie +(1− γl)
1

σl

(
γ

1
σk
k k

σk−1
σk

ie +(1− γk)
1

σk s
σk−1

σk
ie

) σk
σk−1

σl−1
σl


σl

σl−1

, ∀e ∈ [0,Ni] (9)

Unlike non-adopters, adopters now have an inner CES-bundle over capital and software, where
the elasticity of substitution is σk and the weight on capital, as opposed to software, is γk. The
outer bundle, which is CES over the labor and the capital-software bundle, is the same as for
non-adopters.

Unit cost of production. Taking the wage w, the rental rate of capital r, and the rental rate of
software ps as given, a non-adopter chooses the labor and capital inputs at each of its establish-
ments to minimize the total cost of production

min
kie,lie

rNikie +wNilie, (10)

subject to (8). The cost minimization problem for adopters is

min
kie,lie,sie

rNikie +wNilie + pssie, (11)
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subject to (9). The key difference between adopters and non-adopters is in the treatment of custom
software in the total cost. As labor and capital are rival inputs, a non-adopter firm must purchase
Nikie units of capital in order to use kie units of capital at each establishment; in the firm’s cost
minimization problem, each of the rival inputs is multiplied by the firm’s scope, Ni. On the other
hand, because custom software is non-rival, its cost for adopter firms does not increase with the
number of establishments. The firm only needs to spend pssie in order to use sie units of software
at each establishment. In Appendix C.2, we provide an extension to the model that relaxes the
assumption that the firm can use the same software simultaneously and costlessly across all of its
establishments and allows specificity and partial excludability due to software pricing.

Solving the minimization problem, the unit cost to the firm is

Cτ
i (zi,Ni) =

1
zi

[
(1− γl)(pτ

X(Ni))
1−σl + γlw1−σl

] 1
1−σl ,τ ∈ {NA,A} (12)

where pτ
X(Ni), given by,

pNA
X = r and pA

X(Ni) =

[
γkr1−σk +(1− γk)

(
ps

Ni

)1−σk
] 1

1−σk

(13)

is the rental rate of capital for non-adopters and the unit cost of the inner bundle of capital and
software for adopters.13 It is noteworthy that the unit cost of production at the establishment level
is the same as that at the firm level.14

Figure 3 plots the unit cost for non-adopters (black solid line) and adopters (green dashed line),
respectively, against the firm’s number of establishments for a firm with average productivity, z̄.
Notably, the unit cost is constant for non-adopters regardless of their scope. On the other hand,
the unit cost is decreasing in Ni for adopters. Thus, as the firm’s scope increases, it will eventually
become cost-effective for the firm to adopt custom software.

Marginal cost of production. While the unit cost at the establishment level is the same as the
firm level as in Equation (12), the marginal costs differ between the firm and the establishment.

Specifically, for adopters, the firm’s marginal cost of production can be written as

MCi =
∂Ci(zi,Ni(yi))yi

∂yi
=Ci(zi,Ni(yi))+

∂Ci(zi,Ni(yi))

∂yi
yi. (14)

13Appendix C.1 provides detailed derivation of the firm’s problem.
14Denote the unit cost of production at the establishment by Cie. Then, we can express the unit cost of production

at the firm as total cost divided by total output, Ci =CieyieNi/(yieNi), which is the same as Cie.
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Figure 3: Unit Cost Versus Firm Scope

Notes: The figure shows the unit cost of production for non-adopters and adopters versus firm scope for a representa-
tive firm with average productivity, z̄.

Here, we express firm scope as an implicit function of firm output, i.e., Ni(yi). The second term
∂Ci(zi,Ni(yi))

∂yi
< 0 because the unit cost of production Ci(zi,Ni(yi)) decreases in firm scope Ni and

thus output yi. This leads to increasing returns to scope due to the fact that software is non-rival
across the firm’s establishments.

On the other hand, given firm scope Ni, the marginal cost to the establishment is

MCie =
∂Ci(zi,Ni(yi))yie

∂yie
=Ci(zi,Ni(yi)), (15)

which is equal to the unit cost of production in Equation (12).

Cost share of software. The cost share of software is given by

µ
τ
i =


0, τi = NA

ps(pA
X (Ni))

σk−σl (1−γl)γs

(
ps
Ni

)−σk[
(1−γl)(pA

X (Ni))
1−σl+γlw1−σl

] , τi = A
(16)

For adopting firms, the cost share of software varies with the scope of the firm. Whether the
cost share is increasing or decreasing in firm scope will depend on the elasticities of substitution
between factors, σk and σl . We will further discuss the relationship between the factor shares and
firm scope in Section 4.4.
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Firm scope. Given the unit cost for adopters and non-adopters, we now solve for the firm’s
choice of scope and price. We assume firms need to pay a fixed cost of production Fc to keep
operating. In addition, maintaining multiple establishments incurs a span-of-control cost FN(Ni).
The firm chooses its scope Ni and its price at each establishment pie to maximize profits. It solves

Π
τ(zi) = max

Ni,pie
Ni pieyie −NiCτ

i (zi,Ni)yie −FN(Ni)−Fc, (17)

subject to its downward-sloping demand curve for the variety produced by each establishment,
given by Equation (6).15

While there is no closed-form solution for the choice of Ni, the first-order condition with respect
to Ni can be written

π
τ
ie︸︷︷︸

profits per estab.

1− θ − ε

θ −1︸ ︷︷ ︸
within-firm cannibalization

+ (ε −1)µτ
i︸ ︷︷ ︸

cost reduction

=
∂FN(Ni)

∂Ni︸ ︷︷ ︸
span of control cost

, (18)

where πτ
ie is the profits per establishment given by πτ

ie =
1
ε

(
ε

ε−1

)−ε PεQ(Nτ
i )

θ−ε

1−θ (Cτ
i (zi,Ni))

1−ε .
The marginal benefit of adding an additional establishment (the left-hand side) is given by the ad-
ditional profits of the establishment, πτ

ie, which is then augmented by the term in brackets. The
second term, θ−ε

θ−1 , captures the decreasing returns to an additional establishment when θ > ε > 1,
arising from the within-firm cannibalization effect. The third term (ε −1)µτ

i captures the increas-
ing returns-to-scope from the non-rivalry of custom software. µτ

i is the firm’s software cost share
in Equation (16). Because µτ

i is positive for adopters, it increases the marginal benefit of an ad-
ditional establishment and the optimal span of control for adopters will be larger. However, in
order to match the data, µτ

i will be decreasing in the scope of the firm, so this additional benefit
dissipates as the firm grows. The µτ

i is multiplied by ε , the elasticity of substitution between firms
because when the elasticity is larger, the demand for the firm’s varieties increases more in response
to a cost reduction. The right-hand side is the marginal span of control cost.

Panel A of Figure 4 plots the log of optimal firm scope for non-adopters and adopters, respec-
tively, against firm productivity. More-productive firms choose a larger scope, conditional on being
adopters or non-adopters. However, conditional on the same productivity, adopters choose a larger
scope than non-adopters because of the cost reduction from the non-rival custom software input.

15As we assume all establishments of the firm are identical, the demand facing each establishment becomes yie =

N
θ−ε

1−θ

ie p−ε

ie Pε Q, where P and Q are the price index and aggregate demand, respectively.

18



Figure 4: Firm Scope and Profit

A. Optimal Scope B. Firm Profit

Notes: This figure plots the logarithm of optimal firm scope Ni (Panel A) and firm profits (Panel B) against firm
productivity z, for adopters and non-adopters, respectively.

Pricing rule. Each establishment of the firm faces a CES demand curve given by Equation (6)
and engages in monopolistic competition.The firm chooses its price at each establishment to max-
imize profits, according to Equation (17). Then, the optimal price is a constant markup over the
marginal cost of production at the establishment, which is the same as the unit cost in Equa-
tion (12):

pτ
ie =

ε

ε −1
Cτ

i (zi,Ni), τ ∈ {NA,A}. (19)

Adoption of custom software. Finally, the firm chooses whether to adopt custom software, and,
if so, it incurs a fixed cost of using software technology Fs. The firm chooses to adopt custom
software if the profit associated with adopting, net of the fixed cost, is higher than not adopting:

Π(zi) = max{Π
NA(zi),Π

A(zi)−Fs}, (20)

where the gross profits are given in Equation (17).

Panel B of Figure 4 plots the log of firm net profits against firm productivity for non-adopters
and adopters, respectively. The fixed cost of adoption is not necessary for our model to generate
an extensive margin adoption decision, as the adoption decision can be generated by the increasing
returns to scope from the non-rivalry.16 When firm productivity is low, the optimal scope of the
firm is low. As a result, the unit cost of using the non-rival custom software technology is high,
as shown in Figure 3. As firm productivity increases, the optimal scope of the firm increases. The
profit associated with adopting becomes higher as the cost of the software is shared across many

16We introduce a fixed adoption cost to match the share of adopters in the data.
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establishments. Eventually, the decrease in the unit cost from the non-rival input is sufficient to
make adoption worthwhile.

Entry and exit. Following Melitz (2003), we add entry and exit of firms to the model, assuming
that there is an unbounded mass of potential entrants and that firms draw an idiosyncratic produc-
tivity from a distribution, g(z), after incurring a sunk entry cost FE . If their productivity is too low,
it will not be worth the fixed cost of production to produce, and they will immediately exit. If they
start to produce, they face a constant probability of an exit shock δ . Firms will exit when their
productivity is below a threshold, z∗, given by

1
δ

Π(z∗) = 0. (21)

The distribution of producing firms will be given by g̃(z) = g(z)
1−G(z∗) .

A free-entry condition must hold so that the marginal entrant is indifferent between entering
and staying dormant,

1−G(z∗)
δ

∫
∞

z∗
Π(z)g̃(z)dz = FE , (22)

where the left-hand side gives the expected value of an entering firm before receiving its idiosyn-
cratic productivity shock.

4.3 General Equilibrium

A representative household inelastically supplies one unit of labor to the intermediate good pro-
ducers and consumes the final good. We assume that a representative firm transforms the final
good into capital and software at rates Zk and Zs, respectively. The capital and software markets
are perfectly competitive, so the rental rate for capital will be r = P/Zk, and the rental rate for
software will be ps = P/Zs, where P is the price of the final good.

The final goods market clearing condition is given by

Y =C+
1
Zk K +

1
Zs S+F. (23)

Consumption of the representative household, C, is equal to the wage, w, plus any profits from
intermediate good producers and software and capital good producer that are remitted to the con-
sumer.17 K is the aggregate demand for capital given by K = M

∫
z kd(z)g̃(z)dz, where kd(z) is the

17In the baseline model, the software and capital good producer does not make profits, but they will in the extension
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optimal demand for capital for firms with productivity z. Similarly, S is the aggregate demand for
software given by S = M

∫
z sd(z)g̃(z)dz. F is the aggregate costs paid by the firms defined as18

F =
MδFE

1−G(z∗)︸ ︷︷ ︸
entry costs

+M
∫

z
FN(Ni(z))g̃(z)dz︸ ︷︷ ︸

span-of-control costs

+ MFc︸︷︷︸
fixed costs of production

+ MFS
∫

z
I[τ = A]g̃(z)dz︸ ︷︷ ︸

fixed costs of adopting software

. (24)

Definition. A general equilibrium of the economy consists of the price of the final good, P; the
wage, w; the rental rate of capital, r; the rental rate of software, ps; the mass of firms, M; an exit
threshold, z∗; and an adoption threshold, zA, such that

• firms choose whether to exit, price, scope, technology choice, and factor shares according to
(21), (19), (18), (10), (11), and (20);

• free entry (22) and zero profit conditions (21) hold;

• the capital, labor, software, final good, and intermediate goods markets clear.

4.4 Cost Share and Firm Scope

In this section, we show that the model can match the key stylized facts that we document in the
empirical section. Namely, that the likelihood of adopting custom software is increasing in the
scope of the firm and that, conditional on adopting, the cost share of software is decreasing in firm
scope.

Extensive margin. In the model, only firms with a large scope will choose to adopt custom
software. As shown in Figure 3, the unit cost falls as the scope increases for adopting firms because
the software investment cost gets shared across multiple establishments. This implies that there
will be a productivity threshold such that the profit from adopting will exceed the profit from not
adopting. This can be seen in Figure 4; eventually, the profits from adopting exceed non-adopters
profits for the same z. This result holds even when there is no fixed cost to adopting the new
technology; a fixed cost shifts the profit curve for adopters (the green dashed line) up and down
but does not change the shape. This positive relationship between firm scope and adoption of the
custom software matches the extensive margin pattern as in Panel A of Figure 2.

in Appendix C.2.
18We assume the costs are paid in final goods. Alternatively, one can assume that these costs are paid in labor.
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Intensive margin. For adopting firms, the cost shares of software, capital, and labor vary en-
dogenously with firm scope Ni. The cost share of custom software relative to the cost share of
capital is (

pssie

rNikie

)
=

(
r

ps/Ni

)σk−1(1− γk

γk

)σk

. (25)

Importantly, the relationship between the cost share of software relative to capital and firm scope
Ni depends on the elasticity of substitution between capital and software, σk. Panel A of Figure 5
demonstrates that the software share relative to capital share is decreasing in Ni if σk < 1 (com-
plements) and is increasing in Ni if σk > 1 (substitutes). If σk = 1, the production function is
Cobb-Douglas, and the cost shares are constant.

In Section 3.2, we document that conditional on adopting, the relative cost share of software
to capital is falling with the firm’s scope. The model will match this fact in the case where σk is
less than 1. We use this insight in the next section to calibrate σk to match the negative correlation
between software cost share and firm scope.

The same logic applies to the relationship between labor cost share and firm scope. The cost
share of labor relative to the capital-software bundle is given by

(
wNilie

rNikie + pssie

)
=

(
pA

X
w

)σl−1(
γl

1− γl

)σl

, (26)

where pA
X is given in Equation (13). This equation is plotted in Panel B of Figure 5 for the case

when σl > 1 and the case when σl < 1. The labor share will decline with the scope of the firm
relative to the capital-software share when σl > 1. In Section 3.2, we document that, conditional
on adopting, the labor share is declining with firm scope. We use this insight to calibrate the value
of σl in the next section.

5 Quantifying the Model

In this section, we bring the model to the data. We first describe our parametrization and calibration
strategy in Section 5.1. Then, in Section 5.2, we show the model implications for the cross-
sectional relationships between firm scope and cost share of labor and the investment share of
software.
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Figure 5: Software Intensity and Firm Scope

A. Software/ Capital Share B. Labor /Capital-Software Share

Notes: Panel A plots the cost share of custom software relative to capital against the firm’s number of establishments.
The black solid line corresponds to an elasticity of substitution between custom software and capital (σk) less than
1; The green dashed line corresponds to σk greater than 1. Panel B plots the cost share of labor relative to the sum
of custom software and capital against the firm’s number of establishments. The black solid line corresponds to an
elasticity of labor and the capital bundle (σl) less than 1; The green dashed line corresponds to σl greater than 1.

5.1 Parametrization

Our parametrization strategy proceeds in two steps. First, we make several assumptions on the
functional forms and assign values to a set of parameters guided by the literature and data. Second,
we internally calibrate the remaining parameters using the simulated method of moments.

Firm productivity distribution. Following the convention in the literature, we assume that the
firm productivity follows a Pareto distribution g(z) with tail parameter α .

Span-of-control costs. We assume that the cost of managing establishments is log-linear in the
number of establishments

FN(N) = ω1Nω2 , where ω1 > 0,ω2 > 0. (27)

Here, ω1 governs the average span of control cost, and ω2 captures the curvature with which the
cost increases with N.
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Table 3: Parameterization

Panel A. Assigned Parameters

Parameter Description Source Value
ε Elasticity of sub. across firms Head and Mayer (2014) 4
δ Exit probability Firm exit rate, BDS 8.3%
Zs Productivity of custom software sector Rental rate of software, BLS 6.76
Zk Productivity of capital sector Rental rate of capital, BLS 11.11

Panel B. Calibrated Parameters

Parameter Description Value Moment Data Model
σk Elasticity of sub. btw. k and s 0.863 Cross-section of sw share -0.004 -0.004
σl Elasticity of sub. btw. l and k-s 1.195 Cross-section of labor share -0.007 -0.007
ω1 Span of control cost 0.09 Establishments per firm 1.47 1.47
ω2 Span of control curvature 1.35 Estab share top 1% 0.28 0.28
θ Cannibalization 6.78 Sales share top 1% 0.63 0.63
γk Weight on K 0.75 Inv share custom SW 0.10 0.10
γl Weight on L 0.75 Labor share 0.56 0.56
Fe Entry cost 3.36 Employees per firm 30.7 30.7
Fc Fixed cost 0.05 Exit rate, age 1 0.21 0.21
Fs Fixed cost of adoption 0.30 Share adopting 0.03 0.03
α Pareto tail productivity 6.35 Pareto tail employment 1.10 1.11

Notes: This table summarizes model parameters. Appendix D.1 gives more detail on the source for each data moment.

Assigned parameters. Panel A of Table 3 shows the assigned parameters. We set the elasticity
of substitution across firms ε to 4, a standard value as in Head and Mayer (2014).19 The exit
probability δ is set to 8.3% to match the aggregate exit rate of firms in the Business Dynamic
Statistics. The productivity of the custom software-producing and capital-producing sectors is set
to match the rental rate of capital from the BLS.20

Calibration. We internally calibrate the remaining 11 parameters using the method of simulated
moments, summarized in Panel B of Table 3. We denote the vector of parameters
ψ = {σk,σl,ω1,ω2,θ ,FE ,FC,FS,γk,γl,α}, the data moments as the vector m, and the simulated
moments as m̂(ψ). Then, the calibrated ψ̂ minimizes the criterion function

f (ψ) = [m− m̂(ψ)]′W [m− m̂(ψ)]. (28)

19Through the lens of the model, the markup is ε

ε−1 . Then, ε = 4 implies a 33% markup, consistent with recent
estimates of markups (e.g. De Loecker et al. (2020)).

20Appendix A.3 provides details on the construction of the rental rates for different types of capital.
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We use the identity matrix as the weighting matrix W .

Identification. While all parameters are jointly determined, some moments are more informative
for given parameters. Here, we provide a brief description of identification.

(a) Elasticity of substitutions σk and σl: As discussed in Section 4.4, whether the software and
labor cost shares decrease with firm scope depends on the magnitude of σk and σl . We calibrate
the elasticities of substitution so that the model matches the cross-sectional relationships of
the software- and labor-cost shares with firm scope shown in Section 3.2. We discuss how the
calibrated values of these parameters compare to the literature in Appendix D.2.21

(b) Span-of-control costs ω1 and ω2: These two parameters jointly impact the distribution of
establishments per firm. A higher ω1 leads to a smaller number of establishments per firm,
on average. A higher ω2 particularly affects top firms with many establishments. We use the
average number of establishments per firm and the share of establishments owned by the top
1% of firms to pin down these two parameters.

(c) Within-firm elasticity of substitution θ : We refer to θ as the cannibalization parameter, which
controls the extent to which a firm can increase its sales and market share by expanding its
number of establishments. We use the sales concentration, i.e., the sales share by the top 1%
of firms, to calibrate this parameter.

(d) Weights on capital and labor γk and γl: We calibrate these two parameters to match the ag-
gregate labor share and the aggregate share of non-residential fixed investment (excluding
non-software intellectual property investments) that goes towards custom software.22

(e) Entry cost and fixed costs FE , FC, and FS: The fixed cost of adopting software FS is pinned
down by the share of firms with positive software investments. The entry cost and the fixed
cost of production jointly determine the average number of employees per firm and the exit
rate of new entrants.

(f) Pareto tail of the productivity distribution α: We calibrate α so that the Pareto tail for employ-
ment is within the range of estimates from Kondo et al. (2023) using Axtell’s method.

21Our choice of the nested CES structure over capital, software, and labor assumes that the elasticity between capital
and labor is the same as that between software and labor. Nevertheless, a calibrated model with alternative structure
(i.e., labor is first combined with capital and then the labor-capital composite is combined with software) gives similar
quantitative results.

22We exclude non-software intellectual property products because they are also forms of non-rival investments and,
therefore, not accounted for in our model. Excluding those investments increases the investment share of software
from approximately 8 to 10 percent.
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Figure 6: Span-of-control in the Model and Data

Notes: This figure compares the model simulated average number of establishments of firms in each employment size
bin to the averages computed from the Business Dynamics Statistics (BDS, green dashed line).

In addition, we complement this discussion with two sets of analyses in Appendix D. First,
we show that the criterion function in Equation (28) increases with any local perturbation of the
calibrated parameters. This confirms that our calibrated values minimize the criterion function.
Second, we show how each moment changes in response to a small increase in each of the param-
eters, holding all other parameters fixed.

Model fit. The last two columns of Panel B in Table 3 report the data moments and model-
simulated moments, respectively. Overall, the model does a good job of matching these moments.

In addition to the targeted moments, our model is able to match the overall distribution of firm
scope, which is not targeted in calibration. Figure 6 shows the log average number of establish-
ments for each employment size bin. While we target the share of establishments that are operated
by the top 1% of firms, we do not target the full distribution of establishments per firm. Given
that software is non-rival across a firm’s establishments, it is important to match the establishment
distribution in the data for the quantitative assessment of the importance of software. Overall, the
model does a good job of matching the relationship between the number of establishments and
firm size. However, the model slightly overestimates firm scope in the middle of the distribution,
not quite generating the convexity of the data.

5.2 Factor Shares and Firm Scope

The calibrated model can generate the empirical patterns we document in Section 3. Specifi-
cally, it can match the fact that the cost share of software and labor are both decreasing with the
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Figure 7: Software and Labor Shares in the Model and Data

A. Software Share B. Labor Share

Notes: This figure plots the cost share of software (Panel A) and labor (Panel B), relative to those of the smallest firm,
against the firm’s number of establishments. The blue solid line corresponds to the regression estimates associated
with software adopters in columns (1)–(2) of Table A.6, normalized by coefficients on the smallest establishment size
bin. The green dashed line corresponds to the model simulation.

number of establishments of the firm for adopters. While we target the linear relationships be-
tween the cost shares and firm scope in the calibration routine, Figure 7 shows the full relationship
across the distribution of firms and compares it to the data. In the data, we observe that some
single-establishment firms have adopted custom software. However, in the model, only firms with
productivity above a certain threshold opt for adoption, and no single-establishment firms adopt
software.23 The smallest adopter in the calibrated model has 6.58 establishments. To facilitate a
meaningful comparison to the data, we present the software investment share and the labor cost
share relative to the smallest adopter.

Panel A plots the cost share of software against the number of establishments for adopting
firms. The blue dots represent the empirical counterparts of the software cost share relative to
single-establishment adopters for each establishment size bin. For instance, the second dot from
the left indicates that the custom software investment share is about 1.7 percentage points lower
than single-establishment adopters, on average. Compared to the data, the model slightly under-
estimates the magnitude of this relationship. The biggest firms in the model have a software cost
share that is approximately 2 percentage points lower than the smallest adopters, while in the data
the difference is closer to 2.5 percentage points.

Nevertheless, the model effectively captures the convex relationship between the investment

23Alternatively, we could model fixed costs of adopting software that are i.i.d. across firms to rationalize the positive
adoption rates among small firms. We choose a single fixed cost that generates a productivity threshold of software
adoption for clearer intuition.
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Figure 8: Changes in Unit Cost

Notes: This figure plots the changes in the unit cost after a 63% software productivity decline against the logarithm of
firm productivity. The black solid line corresponds to firms that do not adopt software either before or after the shock.
The orange dashed line corresponds to firms that switch from non-adopters to adopters when software productivity
increases. The green dotted line corresponds firms that always adopt software.

shares and the number of establishments of the firm. This is because, as the firm grows larger, the
extra benefit of adding an additional establishment gradually dissipates. Eventually, as the number
of establishments grows to infinity, the effective price of software goes to zero, and the price of the
inner software-capital bundle, pA

X(Ni) given in Equation (13), converges from above to γ
1/(1−σk)
k r.

Similarly, Panel B shows that our model is able to match the empirical distribution of the cost
share of labor with the number of establishments of the firm.

6 The Aggregate Impact of the Decline in the Software Price

In this section, we use our calibrated model to examine the implications of the productivity im-
provements in custom software technology over the last 40 years. Note that the model calibration
described in the last section calibrates the model to data from the present period. In examining the
shock to the software sector, we go back in time, increasing the rental rate of software to its level
in the late 1980s while holding all other parameters of the model fixed.

In particular, we feed into the model the changes in the rental rate of custom software between
1987 and 2018, which maps into a 63% change in the productivity of the custom software sector
Zs. Figure A.2 shows that, while the rental rate of custom software has fallen drastically since the
1980s, the rental rate of other types of capital has remained flat.
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6.1 Heterogeneous Impacts

Before discussing the aggregate impacts of the software shock, we first show that the impact is
heterogeneous across firms. The heterogeneity is important as it will imply that the impact on
aggregate outcomes could be ambiguous.

Unit cost. Figure 8 shows the percentage change in the unit cost from before to after the software
shock. It is helpful to separate firms into three categories: low-productivity firms that never adopt
custom software (the black solid line), high-productivity firms that are always adopters of custom
software (the green dotted line), and firms in the middle range of productivity that switch from
being non-adopters before the shock to adopters after the shock (the orange dashed line). For firms
that never adopt, there is no direct impact from the change in the software price, but their unit cost
increases due to the general equilibrium effect on wage, which increases in response to the overall
increase in labor demand from the software shock. The increase in the unit cost for non-adopters
is uniform: they all see a rise in their unit cost of about 6 percent regardless of their idiosyncratic
productivity. Though it is not shown in this graph, the exit threshold will also increase because of
the wage increase, which lowers the profits of small firms.

For firms that always adopt, the average change in the unit cost is close to zero, at -0.5%, as the
decline in the price of software is offset by the increase in the price of labor. However, the impact
is heterogeneous even among adopters, with large adopters experiencing a larger increase in unit
cost than small adopters. This heterogeneity is driven by the non-homotheticity in the production
function. Because small adopters devote a larger share of their costs to software, they will see a
larger fall in their unit cost in response to the fall in the software price. However, because they
also devote a larger share of their costs to labor than bigger firms, they will be impacted more by
the general equilibrium rise in wages. On net, the former channel dominates and large adopters
experience a larger increase in their unit cost than small adopters (the green dotted line is upward
sloping).

The orange line shows the percent change in the unit cost for switchers—firms that were non-
adopters before the shock and adopters after the shock. For these firms, the growth in the unit
cost is downward sloping. This is because the unit cost for adopting firms declines faster with
productivity, z, than it does for non-adopting firms because of the increasing returns to scope. So,
firms that switch status will have a bigger decline in their unit cost the larger their productivity. The
orange line is also below the green line, meaning that the switchers benefit more from a decline in
the software price than the adopters.
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Figure 9: Heterogeneous Impact of Software Shocks

(A) Firm Scope (B) Sales (C) Labor Share

Notes: This figure plots the optimal firm scope (Panel A), firm sales (Panel B), and the cost share of labor (Panel C)
against the logarithm of firm productivity before and after a 63% software productivity shock.

Firm scope. Panel A of Figure 9 plots the resulting changes in the policy functions for firms’
scope. The black solid line represents the policy functions in the 1987 steady state, and the green
dashed line represents the policy functions in the benchmark model in 2018. The figure shows that,
on the one hand, the scope of switchers and always adopters increases because of the increasing re-
turns to scope from the non-rivalry of software. On the other hand, non-adopters reduce their scope
due to increased wages, consistent with the fact that it is primarily top firms that have increased
their number of establishments (Hsieh and Rossi-Hansberg, 2023).

Firm sales. The response of sales is shown in Panel (b). Similar to the firm scope, the lower unit
cost for switchers and adopters leads to larger sales by these firms. This is amplified by the increase
in the number of establishments, which allows them to further increase their sales. Note that the
increase in sales is largest for the switchers. This could offset the increase in sales concentration
for the top 1% depending on where the switching firms fall in the firm size distribution. In the
calibration of the model, 3% of firms are adopters after the software shock and 1.2% are adopters
before the software shock. This means that when we measure the sales share of the top 1% of
firms, we are roughly discussing the sales share of the “always adopter” group. On the one hand,
they gain market share from the non-adopters who shrink or exit, but they lose market share to
the switchers. Thus, the impact of the software shock on the sales share of the top 1% of firms is
ex-ante ambiguous.

Labor share. Panel C shows the response of the labor share. As discussed in Section 5.2, the
labor share decreases with firm scope and firm productivity for adopters. Because labor and the
capital–software bundle are substitutes, σl > 1, the increase in wages leads to a decline in the labor
share for both adopters and non-adopters who substitute labor for the software-capital bundle. For
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Table 4: Aggregate Impact of Software Shocks

1987 2018∗ ∆

Aggregate SW investment share
Model 9.6 10.5 0.9 pps
Data 5.2 10.5 5.3 pps

Share estabs. owned by top 1% of firms
Model 25.8 27.7 1.9 pps
Data 19.0 27.8 8.8 pps

Sales share by top 1% of firms
Model 61.2 63.4 2.2 pps
Data 52.5 62.9 10.4 pps

Aggregate labor share
Model 56.2 55.6 -0.6 pps
Data 62.8 56.5 -6.3 pps

Notes: This table shows how aggregate moments change in response to a 63% decline in the rental rate of custom
software. The 2018 moments are targeted in the calibration routine, but the 1987 ones are not.

non-adopters, or about 97% of firms in 2018, their labor share decreases by only 0.25 percentage
points. This small change is consistent with the finding that the labor share of the median firm
has been stable (e.g., Autor et al., 2020; Hubmer and Restrepo, 2021; Kehrig and Vincent, 2021).
The decline in the labor share is larger for adopting firms because of the decline in the rental rate.
As the rental rate of software falls, adopters further substitute away from labor towards the now-
cheaper capital-software bundle. Overall, the model matches the fact that the decline in the labor
share is larger for big firms, as in Autor et al. (2020) and Hubmer and Restrepo (2021).

6.2 Aggregate Impacts

In Table 4, we examine the aggregate implications of the software shock. We emphasize that the
moments in 2018 are targeted in the calibration routine described in Section 5.1. However, the
change between 1987, the “pre-software” era, and today is untargeted. We are interested in the
extent to which the decline in the price of custom software can account for the aggregate trends
seen in the data.

Through the lens of the model, the share of firms adopting custom software increases by 1.8
percentage points from just 1.2 percent in 1987. Thus, the shock generates a more than 2-fold
increase in the share of firms adopting custom software. Unfortunately, our data on software
adoption does not go back to 1987, so we cannot compare this increase to the data. In the data,
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the aggregate share of investment devoted to custom software increased by 5.3 percentage points.
The change in the software price alone generates a 0.9 percentage point increase in the aggregate
software investment share or just under 20% of the data. Later, we consider additional shocks that,
through the lens of the model, could have also increased the aggregate software investment share
such as a change in the fixed cost of adoption or the weight on software in the production function
(a software-biased technical change shock).

Next, we examine the impact of the shock on the increase in establishment and sales concen-
tration. As discussed in Section 6.1, the impact of the software shock on sales and establishment
concentration is ambiguous. On the one hand, in response to the shock, adopters increase the
average number of establishments they operate while non-adopters decrease their number of es-
tablishments, increasing concentration. On the other hand, switchers increase their number of
establishments even more than the larger “always adopters.” Since these switchers are not in the
top 1% of firms, this will generate a decline in establishment concentration. On net, the first effect
dominates and the share of establishments owned by the top 1% of firms rises by 1.9 percentage
points. Thus the model generates 21.6% of the increase in the share of establishments owned by
the top 1% of firms.

The model also predicts an increase in sales concentration. Again the impact of the soft-
ware shock is ex-ante ambiguous because of the reallocation between the always adopters and the
switchers. The sales share of the top 1% of firms increases by 2.2 percentage points in the model
or about 21.2% of the increase in the data.

Finally, we find that the software price drop leads to a 0.6 percentage point decrease in the
aggregate labor share. Compared to the 6.3 percentage points decrease in data, the model accounts
for a negligible share of the aggregate decline in the labor share. This is because the decline in the
labor share is heterogeneous across firms, with the bulk of firms (the non-adopters) only decreasing
their labor share by about 0.25 percentage points.

Alternative software shocks. Through the lens of the model, the aggregate increase in the soft-
ware investment share could be generated by other factors besides the decrease in the software
price. As software and ICT have become more advanced and prevalent, natural shocks to consider
include a decrease in the fixed cost of adopting software and a software-biased technical change
shock denoted by a decrease in the weight on capital relative to software in the production function
(γk). While we do not have a way to pin down the relative magnitude of each shock, in this section,
we consider what the impact of shocks to these parameters would be.

Table 5 shows the aggregate impact of the alternative software shocks. The first column reprints
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Table 5: Alternative Software Shocks

Baseline, Zs Fs γk All three
∆SW inv share 0.9 0.9 0.9 2.4
∆Share adopting 1.8 1.5 0.3 2.3
∆Share estabs. owned by top 1% firms 1.9 -1.0 1.3 3.9
∆Sales share by top 1% firms 2.2 -1.6 2.3 4.9
∆Aggregate labor share -0.6 -0.0 -0.3 -0.9

Notes: This table shows the aggregate impact of a decrease in the price of software (the baseline shock), a decrease in
the fixed cost of software, a decrease in the weight on capital relative to software, and all three.

the aggregate impact of the shock to the software price shown in Table 4. For the shock to the fixed
cost of software and the shock to the weight on software versus capital, we calibrate the change
in the parameters to produce the same change in the aggregate software investment share as the
change in price, 0.9pps. As with the baseline shock, we go back in time; specifically, we keep all
parameters fixed as in the current “software era” and increase the price of software, the fixed cost
of software, or the weight on capital relative to software. The final column considers the impact of
the three shocks combined.

A shock to the fixed cost of software actually produces a decline in concentration as measured
by the sales share of the top 1% and the establishment share of the top 1%. This is because as
the fixed cost falls, more firms are switching to become adopters. These firms are not in the top
1%, and they gain market share from the top 1% firms. In the baseline shock, this is offset by
the increase in sales and scope of the top 1% firms who expand as the non-rival input becomes
cheaper. However, when we just change the fixed cost of software, these firms do not expand, and
the only impact is that they face more competition from new adopters. As a result, concentration
goes down.

The software-bias technical change shock, or the shock to the weight on capital relative to
software in the production function, has a similar impact as the price shock, though it generates
a much smaller change in the adoption rate. When software becomes more important, the impact
of the non-rivalry becomes larger. In the baseline model, the unit cost of production declines with
firm scope; this relationship becomes steeper when software makes up a larger share in the capital-
software bundle. As a result, the largest firms increase their scope and sales, leading to an increase
in concentration.

The impact of all three shocks together is shown in the final column. Notably, they interact, and
the aggregate impact on concentration is larger than the sum of its parts. This is because the decline
in the price of software has a bigger impact when software also makes up a larger portion of the
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capital-software bundle. The sales share of the top 1% of firms increases by 4.9 percentage points
or 47% of the 10.4 percentage point increase in the data. Similarly, the share of establishments
owned by the top 1% of firms increases by 3.9 percentage points or 44% of the 8.8 percentage
point increase in the data.

Robustness to excludability and specificity. In our baseline model, we make the assumption
that the custom software investment is non-rival and non-excludable across the establishments of
the firm, meaning that a firm can costlessly use its custom software investment at each of its estab-
lishments. However, in reality, there are a number of factors that limit the extent to which a firm
can costlessly reuse the same piece of software at its various establishments. For example, depend-
ing on the arrangement, the purchasing firm may assume control of vendor-customized software
after the customization, or it may remain under a licensing agreement in which the purchasing firm
pays based on use. If under a licensing agreement, we would call the software partially exclud-
able because the vendor can prevent the purchasing firm from costlessly reusing the same piece of
software. Another consideration is the specificity of the software investment. A piece of software
written for one establishment might need to be adjusted for another establishment.

In Section C.2, we extend the model to account for the partial excludability and specificity of
the custom software investment. We show that the main results are robust to different degrees of
excludability and specificity. We recalibrate our baseline model and the software shock under three
scenarios: partial excludability, partial specificity, and both. While the exact impact of the software
shock varies across the specifications, the qualitative findings are similar. In an extreme case, if the
software were perfectly excludable or specific, it would completely offset the non-rivalry. In this
case, no firm would adopt software, and the software shock would have no effect.

7 Conclusion

This paper examines the implications of the growing importance of custom software investments
for the increases in firm scope and concentration. Software is different from other types of invest-
ment goods because it is non-rival. Once a firm makes an investment in software, it can use it
simultaneously across its many establishments, product lines, or brands.

We build a model of heterogeneous firms that incorporates the non-rivalry of software. In
the model, firms choose their scope—or the number of establishments that they maintain—and
whether or not to adopt a technology that uses custom software. If they invest in custom software,
the cost can be shared across their many establishments, incentivizing the firm to further increase
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their scope.

Two theoretical results arise endogenously within the model due to the non-rivalry. First, firms
that adopt custom software will have increasing returns to scope. For a given productivity, the
unit cost declines with the scope of the firm due to the fact that the firm can share the cost of the
non-rival input across more and more establishments. Second, for adopting firms, the non-rivalry
leads to a non-homothetic production function; the cost shares of capital, software, and labor all
vary with the scope of the firm.

We use a new dataset on firm-level investments in custom software from the U.S. Census to
provide empirical support for both theoretical results. First, we document that, on the extensive
margin, the likelihood a firm adopts custom software is increasing in the scope of the firm. Second,
we show that, for adopters, the cost shares of software and labor are both declining with firm scope,
while the cost share of capital increases with firm scope, consistent with the non-homotheticity in
the model.

We use our model to examine the implications of a shock to the price of custom software sector,
calibrated to match the observed 63% decline in the rental rate of custom software between 1987
and 2018. In response to the shock, the adoption rate of custom software increases twofold. The
shock can account for about 20% of the increase in the software share of aggregate investment, the
share of establishments owned by the top 1% of firms, and the sales share of the top 1% of firms.
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A Data

A.1 Annual Capital Expenditure Survey

We use the Annual Capital Expenditure Survey (ACES) from 2002 to 2018. The ACES surveys
domestic, private, non-farm companies across all sectors on their capitalized expenditures on struc-
tures, equipment (including software), and others. Firms with more than 500 employees are au-
tomatically sampled into the survey. Smaller firms are randomly selected based on their industry
and payroll. We use the ACES provided sampling weights to ensure that our analysis reflects a
nationally representative sample of firms.

The ACES asks firms to report only capitalized expenditures. For software, the instructions
further state:

“Report capital expenditures for computer software developed or obtained for inter-
nal use during the year. Capitalized computer software expenditures should consist
of costs of materials and services directly related to the development or acquisition of
software; payroll and payroll-related costs for employees directly associated with soft-
ware development; and interest costs incurred while developing the software. IMPOR-
TANT: EXCLUDE CAPITAL EXPENDITURES FOR COMPUTER HARDWARE.”

Software obtained for “internal use” includes any software that the firm does not intend to sell to
the market. For example, Workday, an HR management software developed by Salesforce, would
be considered internal use for any firm that purchases Workday for their own needs. It is external
use for Salesforce since they developed it with the intention of selling it to the market. Software
developed for internal use is supposed to be capitalized onto a firm’s balance sheet according to
the GAAP guidelines. We discuss the accounting standards below in Section A.2.

The ACES categorizes software into three types, including (1) pre-packaged, which is pur-
chased off-the-shelf and may include the cost of licensing fees and service/maintenance agree-
ments; (2) vendor customized, which externally developed by a third-party, for internal use; and
(3) internally developed, which is developed by the firm’s employees and may include payroll.

In this paper, we focus on the vendor customized and internally developed software that closely
map into the notion of an input that is non-rival and non-excludable within a firm. We exclude pre-
packaged software for two reasons. First, though prepackaged software is still non-rival, it is often
excludable by the vendor. Often a firm has to buy a separate license for each person or establish-
ment using the product. As a result, it does not scale with the scope of the firm like the input in our
model that is non-rival and non-excludable within the firm. Second, investments in pre-packaged
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software are likely underreported in our data. This is due to the accounting guidelines for handling
pre-packaged versus customized software. While vendor customized and in-house developed soft-
ware should be capitalized on the balance sheet and therefore captured by the ACES, there are
exceptions for pre-packaged software, which is often expensed. We discuss the accounting guide-
lines in Section A.2.

Sample selection. To build our sample, we exclude observations that lack data or have negative
or zero values for payroll, employment, or sales. We drop observations with missing total capi-
tal expenditures, structures investment, equipment investment, or software expenditures, including
total software expenditure (T SOFT), pre-packaged software (P SOFT), vendor-customized soft-
ware (C SOFT), and internally developed software (O SOFT). We also drop firms who report
negative assets at the end of the year and firms whose total software investment is larger than their
equipment investment (the software should be included in their value for equipment). Lastly, we
apply winsorization to the following variables at the 99.5th percentile within their respective six-
digit NAICS industry: total capital expenditures, structure investment, equipment investment, each
type of software investment, and custom software per employee.

We merge the ACES data to the Revenue Enhanced Longitudinal Business Database (LBD).
After merging, our sample includes 384,000 observations.24 Table A.1 shows that our sample
captures 60-70% of the total capital expenditures in the ACES data.

A.2 Accounting Standards

The ACES survey asks firms to report only software investments that are capitalized onto the firm’s
balance sheet (U.S. Census Bureau, 2022). One concern is that if the bulk of software investments
are expensed instead of capitalized, then our measure of software investments will be inaccurate.

In this section, we discuss the relevant accounting standards for whether software investments
should be expensed or capitalized. The ACES documentation specifically refers to “Statement of
Position 98-1, Accounting for the Costs of Computer Software Developed or Obtained for Internal
Use” when instructing firms about what should be reported as capitalized software expenditures
(U.S. Census Bureau, 2022). Statement 98-1 (SOP 98-1) outlines which software development
costs should be capitalized versus expensed (American Institute of Certified Public Accountants,
1998). It was then superseded by ASC 350-40, which is the relevant GAAP guideline for the
treatment of Internal Use Software (Financial Accounting Standards Board, n.d.). Both statements
are similar in their guidance for accounting for internal use software.

24Observation counts are rounded to the nearest thousand in accordance with Census’s disclosure review policies.
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The GAAP principles treat internally developed software developed for internal use as an in-
tangible. Whether a company should expense or capitalize expenditures related to internal-use
software development depends on the stage of the software development project. During prelimi-
nary planning and exploratory stages, costs should be expensed as incurred. However, during the
actual development of the software, costs should be capitalized. Figure A.1 reprints the GAAP
guidelines. Expenses related to paying third-party developers or software purchased from third
parties should be capitalized, as should all payroll expenses related to the development of internal-
use software (PWC, 2021).

To summarize, the GAAP guidelines require firms to capitalize the costs related to the devel-
opment of internal-use software, whether done in-house or by a third-party vendor. An exception
is for pre-packaged software, which can be expensed if it is not material or has a shelf life of under
a year. For these reasons, we believe that pre-packaged software in the ACES is likely under-
reported, particularly for small firms. However, vendor-customized and own-account software
should be well-measured as long as firms are following the accounting standards. Small firms,
in particular, might make many mistakes in following these guidelines. In Section B.4, we pro-
vide a robustness check of our main results using only the sample of publicly traded firms that are
required to follow the GAAP guidelines in their statements to the SEC and are subject to audits.

A.3 Rental Rate of Capital

Following Hall and Jorgenson (1967), we derive the rental rate of capital by the non-arbitrage
condition that says a firm should be indifferent between the following two options. In the first
option, the firm purchases one unit of capital at price pt−1 at the beginning of the period. During
the period, it rents capital out at rate Rt . At the end of the period, the firm loses δt units of
capital to depreciation. The firm resells the (1− δt) unit of capital at price pt . The total profit is
−pt−1 +Rt +(1−δ )pt .

The second option is to save pt−1 in the bank and earn interest at rate rt . Total profit is pt−1rt .
The non-arbitrage condition states that the two should be equal and implies that the rental rate of
capital is

Rt = pt−1rt +δt pt − (pt − pt−1). (29)

Suppose the corporate income tax rate is τt , the rate of investment tax credit is kt , and the
present value of depreciation allowance is zt . Then, a more comprehensive formula of the rental
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rate of capital is

Rt = [pt−1rt +δt pt − (pt − pt−1)]
1− τtzt − kt

1− τt
. (30)

We calculate the rental rate of capital for all assets (r) and custom software (ps), respectively,
following Equation (30). We obtain the price indices (pt), depreciation rates (δt), and tax param-
eters ((1− τtzt − kt)/(1− τt)) from the Bureau of Labor Statistics (BLS). Particularly, the BLS
reports these values for each asset category, including vendor-customized, own-account, and pre-
packaged software.25 We normalize the price indices for all assets and custom software by the
Consumer Price Index (CPI) from the BLS. We set the risk-free rate of return to 2%.

Figure A.2 plots the rental rate of capital for all assets and custom software, respectively, from
1988 to 2018.

B Robustness of Empirical Results

In this section, we show the robustness of our empirical results to alternative measures of both firm
scope and software intensity. Furthermore, our findings remain robust when incorporating firm
fixed effects and using a sample of public firms.

B.1 Alternative Measures of Firm Scope

We measure firm scope using the number of establishments in our baseline results. We show that
our empirical results are robust to alternative measures of firm scope, including employment, sales,
and the number of industries.

We present the results by estimating the following regression:

Yit = βFirmScopeit +α
age
it +α

industry-year
it + εit , (31)

where Yit is a measure of the software investment of firm i in year t, and FirmScopeit is a measure
of firm scope. We include age and industry-year fixed effects to control for heterogeneous trends
across cohorts and industries, respectively. We cluster the standard errors at the industry-year level.

25Underlying data for the rental rate of capital for each asset category are downloaded from: https://www.bls.
gov/productivity/tables/rental-prices-major-industries.xlsx. Aggregate data for all as-
sets, equipment, and structures are downloaded from: https://www.bls.gov/productivity/tables/
total-factor-productivity-capital-details-major-sectors-and-industries.xlsx.
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Table A.2 reports the results. Column (1) shows that on the extensive margin, doubling the
number of establishments is associated with a 0.065 percentage point increase in the likelihood
of adopting custom software. Given a 3 percent adoption rate, the estimate can be translated into
a more than 100% increase in the adoption rate. Columns (2)–(4) report the coefficients when
measuring firm scope by the logarithm of firm employment, sales, and the number of industries in
which the firm operates. Consistent with our baseline finding, the likelihood of adopting custom
software increases with firm scope.

Columns (5)–(8) report the results on the intensive margin, where we measure software inten-
sity by the share of custom software investment out of total capital investment. We focus on firms
with positive investment in custom software, so we are examining the intensive margin conditional
on adoption. As shown in column (5), the coefficient on the log number of establishments is esti-
mated at −0.052. The negative coefficient suggests that the software investment share decreases
as the firm’s number of establishments increases. Considering the average investment share of
custom software is 0.378, this estimate indicates a 13.8% (= 0.052/0.378× 100%) decrease in
the investment share as the number of establishments doubles. Columns (6)–(8) show that this
negative relationship between firm scope and software intensity on the intensive margin is robust
to other measures of firm scope.

B.2 Alternative Measures of Software Investment Intensity

We demonstrate the robustness of our results, especially the findings related to the intensive margin,
across various measures of software intensity.

In addition to using the investment rate of custom software (column (2)), we employ alterna-
tive metrics such as custom software expenditures per employee (column (3)) and the cost share
of custom software (columns (4)–(6)). In particular, the cost share is computed according to Equa-
tion (2). Total capital input is measured by total fixed assets, the wage bill by total payroll, but we
make different assumptions in measuring software input. In column (4), we use software invest-
ment as the software input, assuming full depreciation of software in each period. In column (5),
we assume a depreciation rate less than one and then deduce the steady-state software stock by
dividing the software investment by its depreciation rate.26 In column (6), we adjust the total wage
bill by subtracting the software investment from payroll, recognizing that the software investment
may take the form of wages to developers. Depreciation rates and rental rates of custom software
and other types of capital are obtained from the BLS at the 4-digit NAICS level.

26Implicitly, this is assuming that the firm has the same investment rate every year. Then, the software stock is equal
to Sit/δ jt , where Sit is the custom software investment of firm i in year t and δ jt is the depreciation rate of custom
software for industry j.
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Table A.3 provides assurance that the negative coefficient on the intensive margin persists even
when employing different measures of software intensity.

B.3 Firm Fixed Effects

We incorporate firm fixed effects into our regressions to account for time-invariant firm hetero-
geneity. By leveraging over-time variation, we examine how firms’ software investment changes
in response to expansions in their scope. We note that the interpretation of these results is different
from our baseline findings. Our baseline results show that, in the cross-section, firms with a larger
scope are more likely to adopt but have a lower software investment intensity. Here, we show that,
for a given firm, as they increase their scope, they are more likely to become adopters and they
lower their software investment intensity.

In Table A.4, columns (1) and (3) present our baseline results without firm fixed effects. Col-
umn (2) introduces the firm fixed effect, showing that, on the extensive margin, firms are more
likely to adopt custom software as their number of establishments increase. Columns (4)—(6)
report the intensive margin results using the custom software investment rate, the logarithm of
custom software investment per employee, and the cost share of custom software. Consistent with
our baseline findings, custom software intensity shows a negative correlation with firm scope. Al-
though the standard errors for the coefficient in the software investment share regression increase,
the sign of the coefficient remains negative. The coefficients for regressions of software expen-
ditures per employee and cost share are both negative and statistically significant at the 1 percent
level.

B.4 Public Firm Sample

One concern is that firms might not accurately record and capitalize their custom software invest-
ments. To address this concern, we merge our ACES sample with the Compustat–SSEL bridge
provided by the Census Bureau, resulting in a sample comprising only public firms. Public firms,
generally larger in scale, are subject to audit of their financial statements, thus alleviating potential
concerns about measurement errors.

This public-firm sample includes 40,000 firm-year observations. Around 40% of them report
positive investment in custom software. We repeat the regression analysis in Appendix B.1. Ta-
ble A.5 shows that the intensive and extensive margin relationship between software investment
and firm scope persists when we focus exclusively on public firms.
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C Model Appendix

C.1 Firm’s Problem

Given productivity zi, a firm chooses whether to adopt custom software, its firm scope, the price and
quantity of each establishment’s variety, and factor inputs (including labor, capital, and software if
a firm opts for adoption) at each establishment to maximize its net profit given by

Π(zi) = max{Π
A(zi)−FS,ΠNA(zi)},∀zi,

where the superscripts denote non-adoption (NA) and adoption (A) and FS denotes the fixed-cost
of adopting software. These profits are in turn given by

Π
A(zi) = max

pie,yie,Ni,lie,kie,sie
pieyieNi − (wlieNi + rkieNi + pssie)−FN(Ni)−Fc, and

Π
NA(zi) = max

pie,yie,Ni,lie,kie
pieyieNi − (wlieNi + rkieNi)−FN(Ni)−Fc.

We can solve the profit maximization problem for adopters and non-adopters, respectively,
in two steps. We first solve for the firm’s cost minimization problem to derive the unit cost of
production, and then we solve for the profit maximization problem.

Cost minimization problem. Given the firm’s software adoption choice and firm scope, the firm
chooses labor, capital, and software (if the firm adopts software) of each establishment to minimize
its total production costs. Particularly, for adopters, the firm’s cost minimization problem is

min
lie,kie,sie

wlieNi + rkieNi + pssie

s.t. yie ≤ zi

[
(1− γl)

1
σl X

σl−1
σl

ie + γ

1
σl
l l

σl−1
σl

ie

] σl
σl−1

, where Xie =

(
γ

1
σk
k k

σk−1
σk

ie +(1− γk)
1

σk s
σk−1

σk
ie

) σk
σk−1

, ∀e

Because software is non-rival across the firm’s establishments, the firm’s total software input is the
same as the establishment’s, i.e., si = sie,∀e.
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The first-order conditions w.r.t to lie, kie, and sie, respectively, are

lie : wNi = Niλiez
σl−1

σl
i y

1
σl
ie γ

1
σl
l l

− 1
σl

ie (32)

kie : rNi = Niλiez
σl−1

σl
i y

1
σl
ie (1− γl)

1
σl γ

1
σk
k X

1
σk

− 1
σl

ie k
− 1

σk
ie (33)

sie : ps = Niλiez
σl−1

σl
i y

1
σl
ie (1− γl)

1
σl (1− γk)

1
σk X

1
σk

− 1
σl

ie s
− 1

σk
ie , (34)

where λie is the Lagragian multiplier.

By Equation (33) and (34), we can write kie as a function of sie:

kie =
γk

1− γk

(
ps

rNi

)σk

sie. (35)

Plug this equation into the expression for Xie, and we can write Xie as a function of sie:

Xie =

γk

(
1

1− γk

)σk−1
σk
(

ps

rNi

)σk−1

+(1− γk)
1

σk


σk

σk−1

sie. (36)

To ease the calculation, denote the unit cost of Xie as pX . By Equations (35) and (36), we have
that

pX ≡ rkieNi + pssie

NiXie
=

[
γkr1−σk +(1− γk)

(
ps

Ni

)1−σk
] 1

1−σk

, (37)

which can simplify the expression of Xie to

Xie =
1

1− γk

(
ps

Ni

)σk

(pX)
−σksie. (38)

Now, by Equations (32) and (34), we can write lie as a function of sie:

lie =
γl

1− γl

(
1

1− γk

) σl
σk

X
1− σl

σk
ie

(
ps

wNi

)σl

s
σl
σk
ie =

γl

1− γl

1
1− γk

(
1
w

)σl
(

ps

Ni

)σk

(pX)
σl−σksie, (39)

where the second equality follows from Equation (38).
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By the expressions in Equations (38) and (39), we can get that the unit cost of production is

CA
i =

wlieNi + rkieNi + pssie

Niyie
=

wlie + pX Xie

yie
= [γlw1−σl +(1− γl)(pX)

1−σl ]
1

σl , (40)

where pX is given by Equation (37).

Similarly, we can derive that the unit cost for non-adopters is

CNA
i = [γlw1−σl +(1− γl)r1−σl ]

1
σl . (41)

Profit maximization problem. With the unit cost of production in hand, we can plug it into the
firm’s profit maximization problem. For adopters, the problem is

max
pie,yie,Ni

Ni pieyie −NiCA
i (zi,Ni)yie −FN(Ni)−Fc,

where the unit cost is given by Equation (40).

Denote the profit of an establishment by

π
A
ie(zi, pie,Ni) = pieyie −CA

i (zi,Ni)yie = N
θ−ε

1−θ

i PεQ(p1−ε

ie − p−ε

ie CA
i (zi,Ni)), (42)

where the second equality follows the demand function facing each establishment yie =N
θ−ε

1−θ

i p−ε

ie PεQ.27

Then, we can simplify the firm’s problem to

max
pie,Ni

Niπ
A
ie(zi, pie,Ni)−FN(Ni)−Fc.

The first-order conditions w.r.t pie gives us that the price for each establishment’s output is a
constant markup over the establishment’s marginal cost, which is the same as the unit cost:

pie =
ε

ε −1
CA

i . (43)

Substitute the pricing rule into the establishment’s profit in Equation (42), and we have that

π
A
ie(zi,Ni) =

(ε −1)ε−1

εε
PεQN

θ−ε

1−θ

i (CA
i )

1−ε . (44)

27By the demand curve in Equation (6) and the assumption that all establishments of the firm are symmetric, we can

write the demand facing each establishment as yie = N
θ−ε

1−θ

i p−ε

ie Pε Q, where P and Q are ideal price index and aggregate
demand, respectively.
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The first-order condition w.r.t Ni yields that

π
A
ie

[
1− θ − ε

θ −1
+(ε −1)µA

i

]
=

∂FN(Ni)

∂Ni
, where µ

A
i =

ps(pX)σk−σl(1− γl)γs

(
ps

Ni

)−σk

(1− γl)(pX)1−σl + γlw1−σl
, (45)

which determines the firm’s optimal scope.

The firm’s problem for non-adopters mirrors that for adopters, with µNA
i = 0 in the first-order

condition for Ni.

C.2 Model Extension: Excludability and Specificity

Our baseline model assumes that once a firm pays for its software, it can use it costlessly at all of
its establishments. Software is non-rival, making this feasible in a technical sense. However, there
might be other reasons that the software purchased for one establishment cannot be simultaneously
and costlessly used at another establishment. For example, software purchased from a vendor can
be excludable, meaning that the vendor can restrict the purchasing firm from using the software
multiple times without paying for additional licenses. Alternatively, the software that is appropriate
for one establishment might not be appropriate for another establishment. For example, a point of
sales system or a payroll management system might need to be adjusted to account for differences
across locations in sales and payroll taxes. We refer to this as specificity.

In this section, we show how the main findings of our quantitative exercise would change when
accounting for the specificity and excludability of software. Table A.10 summarizes the model
environment with these extensions. First, we account for excludability in a reduced-form way,
assuming that the vendor charges a price based on the number of establishments at which the
firm uses the software. In particular, we assume that the price of custom software increases log-
linearly with the number of establishments, i.e., ps(Ni) = psN

φ

i , where φ governs the degree of
excludability of software.

Second, for specificity, we follow the framework of Crouzet et al. (2022b) and assume that
the firm pays for a CES bundle of the software used at each of its establishments, i.e., si =

(
∫

Ni
s1/(1−ρ)

ie de)1−ρ = N1−ρ

i sie, where the second equality follows from the assumption that all
establishments are identical. The parameter ρ controls the degree of specificity. ρ = 1 corresponds
to our baseline assumption that software is not specific and a firm can use it freely across estab-
lishments. ρ = 0 means that software is completely specific to each establishment, in which case
it is the same as a non-rival input.
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Then, the cost minimization problem for adopters (Equation (11) in the main model) becomes

min
kie,lie,sie

rNikie +wNilie + psN
1−ρ+φ

i sie.

Compared to the baseline model, the difference is in the cost of using software sie at each estab-
lishment. Before the firm paid pssie, with the assumption that sie = si. Now, they pay psN

1−ρ+φ

i sie.
When there is no specificity (ρ = 1) and no excludability (φ = 0), the two models are the same.
For there to still be increasing returns to scope, we need that ρ > φ , and we limit our analysis to
this set of parameter values.

Although the specificity and excludability terms appear similarly in the firm problem, it is
important to note that they have different implications for how they are handled in the market
clearing conditions. In the case of specificity but no excludability (ρ < 1,φ = 0), the vendor
needs to produce si = N1−ρ

i sie units of software for each firm. In the case of excludability but no
specificity (ρ = 1,φ > 0), the vendor only needs to produce sie units of the software, but will make
a profit on the sale of the software. The vendor’s profit on the sale of software to firm i will be

π
s
i = si

(
psN

φ

i −1/Zs

)
As in the baseline model, we assume that ps = 1/Zs, so that the vendor would make zero profits
in the case where there is no excludability (φ = 0) or when Ni is equal to 1.28 For simplicity, we
assume that the profits are remitted to the representative household and consumed, meaning they
will need to be accounted for in the final good clearing condition.

Quantitative analysis. With this extension of the model, we now examine how our main quan-
titative findings would change under alternative values of φ and ρ . We consider three differ-
ent scenarios: specificity but no excludability, (ρ = 0.8,φ = 0); no specificity but excludability,
(ρ = 1,φ = 0.2); and specificity and excludability, (ρ = 0.8,φ = 0.2). First, we show how φ and
ρ change the model in steady state, holding all other parameters of the model fixed. Then, we
recalibrate the model under each scenario and show how specificity and excludability impact the
aggregate implications of the decline in the software rental rate.

Panel A of Table A.8 shows how the main moments change with φ and ρ , holding all other
parameters of the model fixed. Intuitively, as ρ falls below 1 and φ becomes greater than 0, it
decreases the returns to scale that arise from the non-rivalry of software. As a result, fewer firms
choose to become adopters, and those that do have a lower span of control. Sales and establishment

28We note that given the pricing function, it’s possible for the vendor to make negative profits if the firm has less
than 1 establishment. This will not happen in practice since all adopting firms have Ni > 1.
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concentration both fall. Despite the lower adoption share, the aggregate software investment share
actually increases slightly. This is due to the non-homotheticity of software. Adopting firms
reduce their scope and firms with a smaller scope devote a larger share of their investment towards
software. Similarly, the labor share increases because smaller firms have a larger labor share.

Next, we show how the specificity and excludability change the model’s response to the decline
in the rental rate of capital. For this exercise, we first recalibrate the other parameters of the
model. This is necessary to make a meaningful comparison across the different scenarios. For
example, without re-calibrating, sales concentration is almost 10 percentage points different across
the different scenarios, which would make it difficult to compare the magnitudes of a change in
sales concentration. For each model scenario, we calibrate the parameters to match the moments
given in Table 3. The SSE is given in the last row and all three scenarios can match these moments
similarly well.

Panel B of Table A.8 shows how the main aggregates we are interested in change in response to
the software shock. The first column, showing the baseline model, displays the same results as Ta-
ble 4. Across all three alternative calibrations, the qualitative results are very similar, but quantita-
tively, the results are slightly larger. With ρ = 0.8 and φ = 0.2, the shock explains 32%(=1.68/5.3)
of the increase in the aggregate software investment share, 38%(=3.3/8.8) of the increase in the
share of establishments owned by the top 1% of firms, and 31%=(3.2/10.4) of the increase in the
sales share of the top 1% of firms. In the baseline model, the shock explains closer to 20% of all
three changes.

The slightly larger quantitative results hinge on the fact that we recalibrate the model for each
set of values of ρ and φ . As ρ and φ vary, so does the degree of non-homotheticity and increasing
returns to scope. To match the moments in the data, other parameters, such as those governing the
fixed cost of adoption, the span of control and cannibalization costs, and the weight of software in
the production function, also change. Notably, under all three alternative scenarios, the fixed cost
of adopting software is much lower (between 0.1 and 0.2 versus 0.3 in the baseline calibration). As
a result, on the extensive margin, more firms switch to become adopters when the price of software
falls. The share of adopting firms increases by 2 to 2.5 percentage points under the three alternative
calibrations versus 1.8 percentage points in the baseline model. Further, because adopting firms
have a lower span of control cost and a lower cannibalization cost (ω2 and θ are smaller in the
alternative calibrations than the baseline), they increase their scope more in response to the shock
than in the baseline. As a result, there is a larger increase in sales and establishment concentration.

If one were to set ρ = φ , it would completely offset the non-rivalry of software. In this case,
no firm would adopt and the software shock would have no effect.
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D Model Calibration and Identification

D.1 Construction of Data Moments

Table A.7 provides an overview of the data moments along with their respective sources. Here, we
provide details on how we construct each data moment. The first set of data moments are calculated
using the micro data from our ACES sample. We get the cross-sectional relationship between
custom software cost share and the number of establishments by estimating Equation (3). The
associated coefficient is reported in Table 2, column (1). Similarly, the cross-sectional relationship
for labor share is reported in Table 2, column (2). The share of firms adopting custom software,
the average number of establishments and employees per firm are reported in Table 1.

The second set of data moments, including the share of establishments and sales by top 1%
firms, is constructed from the U.S. Censuses of Manufacturers, Retail Trade, Wholesale Trade,
Services, Utilities and Transportation, and Construction. To consistently calculate these shares in
1987 and 2017, we drop the Census of Finance which starts in 1992. We compute the shares for
each 3-digit NAICS industry and then take averages across industries, weighted by the industry’s
sales share (for the sales concentration) and firm count share (for the establishment concentration).

The third set of data moments is constructed from publicly available data sources. We use
the Business Dynamics Statistics (BDS) to calculate the exit rate of age 1 firms. The aggregate
labor share is calculated from the Bureau of Labor Statistics (BLS) data, representing the ratio of
aggregate labor compensation to value-added output. The aggregate investment share of custom
software comes from the Bureau of Economic Analysis (BEA). For consistency with our model,
we compute the investment share as the ratio of custom software investment (including vendor-
customized and own-account software) to the sum of investment in all software, nonresidential
equipment, and nonresidential structures. We exclude investments in other intellectual property
categories since these are also non-rival but not explicitly accounted for in our model. All these
calculations are based on 2018 data.

Lastly, the Pareto tail for employment comes from Kondo et al. (2023), who estimate the Pareto
tail using the Longitudinal Business Database (LBD). We take a midpoint of their estimates using
Axtell’s method.

D.2 Elasticities of Substitution Between Factors

The model includes two parameters that govern the elasticity of substitution between input types.
σk governs the elasticity of substitution between capital and software. σl governs the elasticity of
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substitution between labor and the capital-software bundle.

In this section, we discuss how the values of these parameters compare to the previous liter-
ature. In particular, a large literature estimates the elasticity of substitution between capital and
labor. Many papers find capital and labor are complements, meaning that it should be less than 1
(Aum and Shin, 2022; Oberfield and Raval, 2021). Others find that they are substitutes, meaning
the elasticity should be greater than 1 (Hubmer, 2023; Karabarbounis and Neiman, 2013). Caunedo
et al. (2023) and Berlingieri et al. (2022) find that the elasticity of substitution is skill-specific, with
low-skill labor being substitutable with capital (an elasticity greater than 1) and high-skill labor be-
ing complementary with capital (an elasticity less than 1). Neither of the elasticity of substitution
parameters in our model, σl or σk, are directly comparable to the estimates from this literature.
The parameter σl will differ from the elasticity of substitution between capital and labor because
of the non-homotheticity and the extensive margin choice of whether to use software. Similarly, if
one estimated a reduced-form elasticity of substitution between labor and software, it may differ
from σl , and the reduced-form elasticity of substitution between capital and software may differ
from σk.

To compare with the estimates in the literature, we calculate the reduced-form elasticity of
substitution between capital, labor, and software by shocking the price of capital or labor and
resolving the model. For instance, we increase the rental rate of capital by 0.01%, resolve the
model, and then calculate the elasticity of substitution at the firm level as

σK,L =
dln(Ki/Li)

dln(w/r)
. (46)

The formula for the aggregate elasticity of substitution between capital and labor is the same, but
using aggregate demand for capital and labor instead of firm-level demand for capital and labor.
Analogous formulas give the reduced form elasticity of substitution between capital and software
or software and labor.

Table A.9 reports the reduced form elasticities of substitution. Note that the exact value de-
pends on which price is being shocked and whether one is looking at the aggregate or average
elasticity of substitution. The implied elasticity of substitution between capital and labor (σKL)
is greater than 1, indicating that they are gross substitutes. The elasticity of substitution between
software and capital (σSK) is estimated at 0.98-0.99, while that between software and labor (σSL) is
1.30-1.42. To our knowledge, Aum and Shin (2022) is the only paper that estimates the elasticity
of substitution between software and labor. Consistent with our calibration, they find an elasticity
greater than 1, suggesting that software and labor are substitutes. They also find that software and
equipment are complements, consistent with our calibrated value of σSK being less than 1.
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D.3 Additional Calibration Results

We use the method of simulated moments to calibrate the model, where the criterion function is

f (ψ) = [m− m̂(ψ)]′W [m− m̂(Ψ)].

We first use grid search to find parameter values that minimize the criterion function. Then,
we use this as the initial value to further refine our parameters using Nelder-Mead method. To
ensure our parameter values minimize the criterion function, we plot the loss function against each
parameter individually while keeping the others constant at their calibrated values. For instance,
the first panel shows how the loss function varies as we adjust θ within a range of a 10% decrease
to a 10% increase, with all other parameters held fixed. The plotted loss functions exhibit convex
shapes and sharply rise around the calibrated values, which confirms that our calibrated parameter
values locally minimize the criterion function.

D.4 Additional Identification Results

Figure A.4 shows how the moments respond to a 1 percent increase in each of the parameters,
holding all other parameters fixed. From this figure, we can see that most parameters have an
impact on many different moments. In this sense, they are all jointly identified. However, there are
intuitive links between certain parameters and certain moments.

For example, θ controls the extent to which firms will cannibalize their own sales as they
increase their number of establishments. Cannibalization increases with θ , lowering the incentive
for firms to expand. As a result, moments related to the skewness of the firm size distribution, such
as the sales and establishment share of the top firms, decrease as θ increases. Because the most
productive firms do not grow as large, the small firms face less competition, and the exit rate falls.

The parameter α gives the Pareto tail of the underlying productivity distribution. As α in-
creases, so does the Pareto tail of employment in the model. A high α means the underlying
productivity distribution has a thinner tail, so moments related to the skewness of employment,
sales, and the number of establishments also fall, similar to an increase in θ .

The fixed costs of adoption, entry, and production, Fs, Fe, and Fc, respectively, govern the
share of firms adopting, average employment and number of establishments, and the exit rate. The
parameter ω1 governs the importance of the span of control cost while ω2 governs the elasticity of
the span of control cost with the number of establishments. Thus, ω2 directly impacts many of the
measures of skewness in the firm size distribution.
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The parameters γk and γl control the weight on capital, software, and labor in the production
functions. Intuitively, the labor share increases with the weight on labor, γl , and the average soft-
ware share of investment decreases with γk, the weight on capital as opposed to software. They
also have a direct impact on the unit cost and, therefore, the profitability of the firms. As a result,
they impact the exit rate since firms exit when their profitability falls below zero.

Finally, σl is the elasticity of substitution between labor and the capital-software bundle and
σk is the elasticity of substitution between capital and software. As discussed in Section 4.4,
these will control the cross-sectional relationships between firm scope and the labor, capital, and
software shares.
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Additional Tables

Table A.1: Share of ACES Public Totals Captured in Our Sample

Vendor Own Total
Total Pre-packaged Customized Account Capitalized Total Total

Software Software Software Software Expenditures Equipment Structures
Share 71.06 70.67 68.00 64.90 65.53 66.56 62.61

Notes: For each investment type, the table displays the total in our final ACES sample divided by the publicly released
ACES totals, averaged across all years.
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Table A.2: Software Intensity and Firm Scope: Alternative Measures of Firm Scope

Extensive Margin: I[Isw > 0] Intensive Margin: Investment Share

(1) (2) (3) (4) (5) (6) (7) (8)
log(NEstab) 0.065∗∗∗ −0.052∗∗∗

(0.0016) (0.0034)
log(emp) 0.022∗∗∗ −0.044∗∗∗

(0.0005) (0.0044)
log(sales) 0.017∗∗∗ −0.040∗∗∗

(0.0004) (0.0038)
log(NInd) 0.135∗∗∗ −0.0892∗∗∗

(0.0031) (0.0061)
N 384,000 384,000 384,000 384,000 82,000 82,000 82,000 82,000
R2 0.123 0.129 0.127 0.120 0.645 0.652 0.653 0.643
Ind–Year FE Y Y Y Y Y Y Y Y
Age FE Y Y Y Y Y Y Y Y

Notes: This table estimates the following regression:

Yit = βFirmScopeit +α
age
it +α

industry-year
it + εit ,

where Yit is a measure of the software investment of firm i in year t, and FirmScopeit is a measure of firm scope. α
age
it

and α
industry-year
it are age and industry-year fixed effects, respectively. The dependent variable for column (1)–(4) is an

indicator set to 1 if a firm makes positive investment in custom software. The dependent variables for column (5)–(8)
is the share of custom software investment out of total capital expenditure. Firm scope is measured by the logarithm
of the firm’s number of establishment in column (1) and (5), the logarithm of employment in column (2) and (6), the
logarithm of sales in column (3) and (7), and the logarithm of the number of industries in column (4) and (8). Industry
is at the 6-digit NAICS level. Standard errors are clustered at the industry-year level.
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Table A.3: Software Intensity and Firm Scope: Alternative Measures of Software Intensity

Extensive Margin Intensive Margin

1[Isw > 0] Investment Log(Investment Cost Share Cost Share Cost Share
Share Per Worker) Alt. Payroll-adjusted

(1) (2) (3) (4) (5) (6)
log(NEstab) 0.065∗∗∗ −0.052∗∗∗ −0.140∗∗∗ −0.004∗∗∗ −0.009∗∗∗ −0.002∗∗∗

(0.0016) (0.0034) (0.0143) (0.0007) (0.0032) (0.0003)

N 384,000 82,000 82,000 82,000 82,000 82,000
R2 0.123 0.645 0.635 0.734 0.605 0.733
Ind–Year FE Y Y Y Y Y Y
Age FE Y Y Y Y Y Y

Notes: This table estimates the following regression:

Yit = βFirmScopeit +α
age
it +α

industry-year
it + εit ,

where Yit is a measure of the software investment of firm i in year t, and FirmScopeit is the logarithm of the firm’s
number of establishments. α

age
it and α

industry-year
it are age and industry-year fixed effects, respectively. The dependent

variable for column (1) is an indicator set to 1 if a firm makes positive investment in custom software. The dependent
variables for column (2) and (3) are the share of custom software investment out of total capital expenditure, and
the logarithm of custom software investment per worker, respectively. Column (4)–(6) use different versions of the
custom share of custom software as the dependent variable. (See discussion in Appendix B.2.) Industry is at the 6-digit
NAICS level. Standard errors are clustered at the industry-year level.
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Table A.4: Software Intensity and Firm Scope: Including Firm Fixed Effects

Extensive Margin Intensive Margin

I[Isw > 0]
Investment Log(Investment Cost

Share Per Worker) Share
(1) (2) (3) (4) (5) (6)

log(NEstab) 0.065∗∗∗ 0.031∗∗∗ −0.052∗∗∗ −0.004 −0.134∗∗∗ −0.001∗∗∗

(0.0016) (0.0056) (0.0034) (0.0032) (0.0262) (0.0004)

N 384,000 127,000 82,000 49,500 49,500 49,500
R2 0.123 0.579 0.705 0.753 0.681
Ind-Year FE Y Y Y Y Y Y
Firm FEs Y Y Y Y

Notes: This table estimates the following regression:

Yit = αi +βFirmScopeit +α
industry-year
it + εit ,

where Yit is a measure of the software investment of firm i in year t, and FirmScopeit is the logarithm of the firm’s
number of establishments. αi and α

industry-year
it are firm and industry-year fixed effects, respectively. The dependent

variable for column (1)–(2) is an indicator set to 1 if a firm makes positive investment in custom software. The
dependent variables for column (2)–(4) are the share of custom software investment out of total capital expenditure,
the logarithm of custom software investment per worker, and the cost share of custom software, respectively. Column
(1) and (3) present the baseline results without firm fixed effects. Industry is at the 6-digit NAICS level. Standard
errors are clustered at the industry-year level.
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Table A.5: Software Intensity and Firm Scope: Public Firms

Extensive Margin: I[Isw > 0] Intensive Margin: Investment Share

(1) (2) (3) (4) (5) (6) (7) (8)
log(NEstab) 0.051∗∗∗ −0.010∗∗∗

(0.0043) (0.0024)
log(emp) 0.069∗∗∗ −0.011∗∗∗

(0.0050) (0.0029)
log(sales) 0.057∗∗∗ −0.008∗∗∗

(0.0042) (0.0023)
log(NInd) 0.085∗∗∗ −0.017∗∗∗

(0.0085) (0.0043)
N 40,000 40,000 40,000 40,000 22,000 22,000 22,000 22,000
R2 0.475 0.489 0.488 0.471 0.610 0.611 0.610 0.610
Ind–Year FE Y Y Y Y Y Y Y Y
Age FE Y Y Y Y Y Y Y Y

Notes: This table uses the ACES-Compustat merged sample to estimate the following regression:

Yit = βFirmScopeit +α
age
it +α

industry-year
it + εit ,

where Yit is a measure of the software investment of firm i in year t, and FirmScopeit is a measure of firm scope. α
age
it

and α
industry-year
it are age and industry-year fixed effects, respectively. The dependent variable for column (1)–(4) is an

indicator set to 1 if a firm makes positive investment in custom software. The dependent variables for column (5)–(8)
is the share of custom software investment out of total capital expenditure. Firm scope is measured by the logarithm
of the firm’s number of establishment in column (1) and (5), the logarithm of employment in column (2) and (6), the
logarithm of sales in column (3) and (7), and the logarithm of the number of industries in column (4) and (8). Industry
is at the 6-digit NAICS level. Standard errors are clustered at the industry-year level.
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Table A.6: Cost Shares and Firm Scope: By Establishment Size Categories

Cost Share of

Custom Software Labor Capital
(1) (2) (3)

1b.estab cats×1[SW adopter] 0 -0.0178∗∗∗ -0.0311***
(0) (0.0044) (0.0048)

2.estab cats×1[SW adopter] -0.0171*** -0.0363∗∗∗ 0.0164***
(0.0034) (0.0059) (0.0061)

3.estab cats×1[SW adopter] -0.0239∗∗∗ -0.0334∗∗∗ 0.0198***
(0.0028) (0.0067) (0.0071)

4.estab cats×1[SW adopter] -0.0200∗∗∗ -0.0504∗∗∗ 0.0350***
(0.0033) (0.0040) (0.0042)

5.estab cats×1[SW adopter] -0.0211∗∗∗ -0.0552∗∗∗ 0.0418***
(0.0023) (0.0038) (0.0038)

6.estab cats×1[SW adopter] -0.0221∗∗∗ -0.0534∗∗∗ 0.0401***
(0.0026) (0.0035) (0.0035)

7.estab cats×1[SW adopter] -0.0251∗∗∗ -0.0536∗∗∗ 0.0389***
(0.0031) (0.0042) (0.0042)

1b.estab cats×1[SW non-adopter] 0 0
(0) (0)

2.estab cats×1[SW non-adopter] 0.00751∗∗∗ -0.00771***
(0.0028) (0.0028)

3.estab cats×1[SW non-adopter] 0.00256 -0.00309
(0.0046) (0.0046)

4.estab cats×1[SW non-adopter] 0.00782 -0.00809
(0.0060) (0.0060)

5.estab cats×1[SW non-adopter] 0.0114∗∗ -0.0116**
(0.0052) (0.0052)

6.estab cats×1[SW non-adopter] 0.0505∗∗ -0.0504**
(0.0217) (0.0217)

7.estab cats×1[SW non-adopter] 0.0793∗ -0.0796*
(0.0424) (0.0423)

N 82,000 384,000 384,000
R2 0.727 0.256 0.256
Ind–Year FE Y Y Y

Notes: This table estimates the following regression:

µik jt = α1[SW adopter]+βk1[SW adopter]+ γk +δ jt + εik jt ,

where the dependent variable is the cost share of custom software, labor, and capital, respectively, for firm i falling
in the k’s establishment-size bin. j denotes industry and t year. 1[SW adopter] is an indicator set to 1 if a firm
makes positive investment in custom software. γk is a set of fixed effects for each establishment size bin, and δ jt is
industry-year fixed effects. Industry is at the 6-digit NAICS level. Standard errors are clustered at the industry-year
level.
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Table A.7: Data Moments and Sources

Moment Data Source

Cross-sectional relationship between custom software
−0.004

Regression coefficient from Table 2

cost share and number of establishments column (1) using ACES sample

Cross-sectional relationship between labor cost share
−0.007

Regression coefficient from Table 2

and number of establishments for adopters column (2) using ACES sample

Share of adopters 0.03 Table 1 using ACES sample

Avg. number of establishments per firm 1.47 Table 1 using ACES sample

Avg. number of employees per firm 30.7 Table 1 using ACES sample

Share of establishments owned by top 1% firms 0.35 U.S. Censuses*

Sales share of top 1% firms 0.63 U.S. Censuses*

Exit rate of firms with age one 0.21 Business Dynamics Statistics

Aggregate labor share 0.56 Bureau of Labor Statistics

Aggregate investment share of custom software 0.10 Bureau of Economic Analysis

Pareto tail for employment 1.10 Kondo et al. (2023)

Notes: This table summarizes the data moments and sources for calibration. Appendix D.1 provides more details. * We
compute the averages of establishments and sales concentration across 3-digit NAICS industries using the Censuses
of Manufacturers, Retail Trade, Wholesale Trade, Services, Utilities and Transportation, and Construction. We drop
the Census of Finance since it starts in 1992.
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Table A.8: Robustness to Specificity and Excludability

Panel A: Steady-state moments with different ρ and φ ,
holding all other parameters fixed

Baseline ρ = 0.8 φ = 0.2 ρ = 0.8,φ = 0.2
SW Investment share 10.48 10.80 10.80 10.82
Share adopting 3.00 2.08 2.08 1.49
Share estabs. top 1% 27.7 25.7 25.7 23.7
Sales share top 1% 63.4 59.2 59.2 54.3
Aggregate labor share 55.6 56.3 56.3 57.0

Panel B: Aggregate impact of software shock with different ρ and φ ,
recalibrating all other parameters

Baseline ρ = 0.8 φ = 0.2 ρ = 0.8,φ = 0.2
∆ SW investment share 0.88 1.00 1.14 1.68
∆ Share adopting 1.82 2.09 2.13 2.55
∆Share estabs. top 1% 1.9 1.8 2.2 3.3
∆Sales share top 1% 2.2 2.2 2.6 3.2
∆Aggregate labor share -0.6 -0.6 -0.7 -0.8
SSE 0.49e−3 0.76e−3 0.28e−3 0.68e−3

Notes: Panel A shows key aggregates under alternative values of ρ and φ , holding all other parameters of the model
fixed. Panel B shows the change in key aggregates in response to a software shock, under different values of the
parameters ρ and φ . In the baseline calibration, ρ = 1 and φ = 0. In Panel B, the other model parameters are
recalibrated for each set of values of ρ and φ to match the moments given in Table 3. The sum of squared errors for
each calibration is given in the last row.
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Table A.9: Reduced-form Elasticities of Substitution

Shock w Shock r
Avg Agg Avg Agg

σKL 1.19 1.12 1.20 1.20
σSK – – 0.99 0.98
σSL 1.42 1.30 – –

Notes: Elasticities are undefined if the price of neither factor has been shocked. For example, when shocking the
wage, the elasticity of substitution between software and capital is undefined because the denominator of the reduced
form elasticity, Equation (46), is indeterminate.
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Table A.10: The Economic Environment

Y =

(∫
I y

ε−1
ε

i di
) ε

ε−1

Aggregate output

yi =

(∫ Ni
0 y

θ−1
θ

ie de
) θ

θ−1

Aggregator of firm varieties

yNA
ie = zi

[
γ

1
σl
l l

σl−1
σl

ie +(1− γl)
1

σl k
σl−1

σl
ie

] σl
σl−1

Establishment production for non-adopters

yA
ie = zi

[
γ

1
σl
l l

σl−1
σl

ie +(1− γl)
1

σl X
σl−1

σl
ie

] σl
σl−1

Establishment production for adopters

Xie =

(
γ

1
σk
k k

σk−1
σk

ie +(1− γk)
1

σk s
σk−1

σk
ie

) σk
σk−1

Capital-software bundle

ΠNA
i = salesi −wli − rki −FN(Ni)−Fc Firm profit for non-adopters

where salesi =
∫ Ni

0 pieyiede, li =
∫ Ni

0 liede, ki =
∫ Ni

0 kiede

ΠA
i = salesi −wli − rki − ps(Ni)si −FN(Ni)−Fc Firm profit for adopters

where salesi =
∫ Ni

0 pieyiede, li =
∫ Ni

0 liede, ki =
∫ Ni

0 kiede,

and si = (
∫ Ni

0 s
1

1−ρ

ie de)1−ρ

and ps(Ni) = psN
φ

i

Πi=max{ΠNA
i ,ΠA

i −Fs} Net firm profits

S = ZsYs Software production

K = ZkYk Capital production

S =
∫
I sidi Software resource constraint

K =
∫
I kidi Capital resource constraint

ΠS =
∫ Ni

0 psN
φ

i sidi−Ys Software producer profit

ΠK =
∫ Ni

0 rkidi−Yk Capital producer profit

L =
∫
I lidi Labor resource constraint

C = wL+Πs +Πk +
∫
I Πidi Household budget constraint

Y =C+Yk +Ys +F Final good resource constraint

where F = MδFE

1−G(z∗) +M
∫
I FN(Ni)di+MFc

+MFS ∫
I 1[ΠA

i > ΠNA
i ]di

Notes: In the benchmark model, we set φ = 0 and ρ = 1 so that there is no excludability or specificity. In this case,

the software producer makes zero profits. We consider extensions with 0 < φ < ρ < 1 in Appendix C.2.

27



Additional Figures

Figure A.1: PWC Handbook on the GAAP Guidelines

Source: PWC (2021)
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Figure A.2: Rental Rate of Capital
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Notes: This figures shows the rental rate of capital (including all types of assets) and that of custom software from
1988 to 2018. Appendix A.3 provides more details on the construction of these rental rates.
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Figure A.3: Loss Function

θ α Fs

Fe Fc ω1

ω2 γl γk
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Notes: This figure shows the loss func-
tion against each parameter, holding the other parameters at optimal values. The loss function is calculated by:

f (ψ) = [m− m̂(ψ)]′W [m− m̂(ψ)], (47)

where we use the identity matrix as the weighting matrix W .
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Figure A.4: Response of Moments to a 1% Increase in Parameters
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Notes: This figure shows the percent change in each moment in response to a 1% increase in each parameter, holding
the other parameters at optimal values.
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